Abstract
In this paper, we propose the pointing and correction algorithm for optimized performance based on Bluetooth communication. The error from the accelerometer sensor's output must be carefully managed as the accelerometer sensor is more sensitive to data change compared to that of the gyroscope sensor. Thus, we minimize the noise by applying the Kalman filter to data for each axis from the accelerometer. In addition, we can also obtain effect compensating the hand tremor by applying the Kalman filter to the data variation for x and y. In this study, we extract data through the Quaternion mapping process on data from the accelerometer and gyroscope. In turn, we can obtain a tilt compensation by applying a compensation algorithm with acceleration of the gravity of the extracted data. Moreover, in order to correct the inaccuracy on smart sensor due to the rapid movement of a device, we propose a adaptive pointing and correction algorithm using the genetic approach to generate the initial population depending on the user.
본 논문에서는 블루투스 통신 기반에서 최적의 성능을 위한 포인팅 및 보정 알고리즘을 제안한다. 가속도 센서는 각속도 센서보다 데이터 변화량이 더 민감하기 때문에 데이터 출력 값의 오류를 야기하는 주된 원인이 된다. 따라서 가속도 센서로부터의 각 축에 대한 데이터 값에 칼만 필터를 적용함으로써 노이즈를 최소화하였으며, 추가적으로 x, y 변화량에 칼만 필터를 적용함으로써 손 떨림에 대한 보정 효과를 얻을 수 있다. 본 논문에서는 가속도와 각속도 센서 데이터를 Quaternion 사상 처리를 통해 데이터 추출을 적용한다. 추출된 데이터 값에 중력 가속도를 이용한 기울임 보정 알고리즘을 적용함으로써 기울임 보정 효과를 얻을 수 있다. 또한 장치의 급격한 움직임에 의한 센서 데이터의 부정확성을 해결하기 위하여 유전자 알고리즘을 적용한 사용자에 따라 달리 초기 해집단을 생성하는 적응적 포인팅 및 보정 알고리즘을 구현한다.