초록
본 논문에서는 정확한 깊이를 추출하기 위해 고차 통계기반 초점 척도를 이용한 SFF(shape from focus) 알고리즘을 제시한다. 기존의 SFF기반 3차원 깊이 복원 기법들은 초점 척도로 SML(sum of modified Laplacian)을 사용하기 때문에, 성능이 영상의 특성에 크게 의존하여 초점이 정밀하거나 질감이 풍부한 영상에서만 효율적이다. 그러므로, 본 논문에서는 비교적 질감과 초점이 빈약한 영상에서도 초점 값을 추출할 수 있도록 고차 통계(HOS:higher order statistics)를 이용한 알고리즘을 제안한다. 이 초점 척도에 의해 초점 영역 맵이 생성되고 국부적으로 최적의 초점 값을 갖는 화소를 추출하기 위해 영역개선, 세선화, 모서리 검출과정이 순서적으로 적용된다. 최종적으로 추출된 점에 대해서 Delaunay 삼각화를 사용하여 3차원 모델정보를 생성한다.
This paper presents a SFF(shape from focus) algorithm using a new focus measure based on higher order statistics for the exact depth estimation. Since conventional SFF-based 3D depth reconstruction algorithms used SML(sum of modified Laplacian) as the focus measure, their performance is strongly depended on the image characteristics. These are efficient only for the rich texture and well focused images. Therefore, this paper adopts a new focus measure using HOS(higher order statistics), in order to extract the focus value for relatively poor texture and focused images. The initial best focus area map is generated by the measure. Thereafter, the area refinement, thinning, and corner detection methods are successively applied for the extraction of the locally best focus points. Finally, a 3D model from the carefully selected points is reconstructed by Delaunay triangulation.