DOI QR코드

DOI QR Code

Condition Monitoring of Low Speed Slewing Bearings Based on Ensemble Empirical Mode Decomposition Method

EEMD법을 이용한 저속 선회베어링 상태감시

  • Caesarendra, W. (School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering, University of Wollongong) ;
  • Park, J.H. (Department of Mechanical and Automotive Engineering, Pukyong National University) ;
  • Kosasih, P.B. (School of Mechanical, Materials and Mechatronic Engineering, Faculty of Engineering, University of Wollongong) ;
  • Choi, B.K. (Department of Energy and Mechanical Engineering, Gyeongsang National University)
  • Received : 2012.09.21
  • Accepted : 2012.12.20
  • Published : 2013.02.20

Abstract

Vibration condition monitoring of low-speed rotational slewing bearings is essential ever since it became necessary for a proper maintenance schedule that replaces the slewing bearings installed in massive machinery in the steel industry, among other applications. So far, acoustic emission(AE) is still the primary technique used for dealing with low-speed bearing cases. Few studies employed vibration analysis because the signal generated as a result of the impact between the rolling element and the natural defect spots at low rotational speeds is generally weak and sometimes buried in noise and other interference frequencies. In order to increase the impact energy, some researchers generate artificial defects with a predetermined length, width, and depth of crack on the inner or outer race surfaces. Consequently, the fault frequency of a particular fault is easy to identify. This paper presents the applications of empirical mode decomposition(EMD) and ensemble empirical mode decomposition(EEMD) for measuring vibration signals slewing bearings running at a low rotational speed of 15 rpm. The natural vibration damage data used in this paper are obtained from a Korean industrial company. In this study, EEMD is used to support and clarify the results of the fast Fourier transform(FFT) in identifying bearing fault frequencies.

대부분의 철강산업 기계 등에 설치되어 사용되는 선회베어링은 교체를 위한 정확한 정비계획이 필요하기 때문에 저속회전체의 선회베어링에 대한 진동 상태감시가 매우 중요하게 되었다. 지금까지 음향방출(AE)법이 저속베어링의 상태감시에 가장 많이 사용되는 기술이고 몇몇의 경우는 진동을 사용한다. 음향방출을 사용하는 일반적인 이유는 저속에서 구름요소와 결함위치 사이의 충격에 의하여 발생되는 신호가 약하고 때때로 노이즈나 다른 간섭 주파수에 결함신호가 묻혀 검출이 어렵기 때문이다. 따라서 쉽게 특정 결함에 대한 결함주파수의 동정을 위하여 몇몇 연구자들은 충격에너지를 증가시키기 위하여 인위적으로 미리 정해진 길이, 넓이와 깊이의 결함을 베어링의 내, 외부 레이스에 인가하기도 한다. 이 논문에서는 15 rpm에서 운전하는 저속 선회베어링의 진동신호에 EMD와 EEMD를 적용하였고 논문에서 사용한 진동결함 신호는 국내 산업체에서 공급받은 것이다. 이 논문에서는 베어링결함 주파수 동정을 위하여 EEMD를 사용하여 결함신호의 FFT처리 결과를 입증하고 설명하였다.

Keywords

References

  1. Kania, L., 2006, Modeling of Rollers in Calculation of Slewing Bearing with the Use of Finite Elements, Mechanism and Machine Theory, Vol. 41, No. 11, pp. 1359-1376. https://doi.org/10.1016/j.mechmachtheory.2005.12.007
  2. Goncz, P., Potocnik, R. and Glodez, S., 2011, Load Capacity of a Three-row Roller Slewing Bearing Raceway, Procedia Engineering, Vol. 10, pp. 1196-1201. https://doi.org/10.1016/j.proeng.2011.04.199
  3. Gang, Z., Xue, Z., Kaifeng, Z., Juan, R., Dede, J., Qingzhen, Y., Mingyan, L. and Yan, Z., 2011, Optimization Design of Large-scale Cross-roller Slewing Bearing Used in Special Propeller, Applied Mechanics and Materials, Vol. 48-49, No. 2, pp. 787-792. https://doi.org/10.4028/www.scientific.net/AMM.48-49.787
  4. Glodez, S., Potocnik, R. and Flasker, J., 2012, Computational Model for Calculation of Static Capacity and Lifetime of Large Slewing Bearing's Raceway, Mechanism and Machine Theory, Vol. 47, No. 1, pp. 16-30. https://doi.org/10.1016/j.mechmachtheory.2011.08.010
  5. Aguirrebeitia, J., Abasolo, M., Aviles, R. and Fernández de Bustos, I., 2012, Theoretical Calculation of General Static Load-carrying Capacity for the Design and Selection of Three Row Roller Slewing Bearings, Mechanism and Machine Theory, Vol. 48, No. 2, pp. 52-61. https://doi.org/10.1016/j.mechmachtheory.2011.09.003
  6. Bai, X., Xiao, H. and Zhang, L., 2011, The Condition Monitoring of Large Slewing Bearing Based on Oil Analysis Method, Key Engineering Materials. Vol. 474-476, No. 4, pp. 716-719. https://doi.org/10.4028/www.scientific.net/KEM.474-476.716
  7. Liu, R., 2007, Condition Monitoring of Low-speed and Heavily Loaded Rolling Element Bearing, Industrial Lubrication and Tribology, Vol. 59, No. 6, pp. 297-300. https://doi.org/10.1108/00368790710820892
  8. Rodger, L. M., 1979, The Application of Vibration Signature Analysis and Acoustic Emission Source Location to On-line Condition Monitoring of Anti-friction Bearings, Tribology International, Vol. 12, No. 2, pp. 51-59. https://doi.org/10.1016/0301-679X(79)90001-X
  9. Žvokelj, M., Zupan, S. and Prebil, I., 2010, Multivariate and Multiscale Monitoring of Large-size Low-speed Bearings Using Ensemble Empirical Mode Decomposition Method Combined with Principal Component Analysis, Mechanical Systems and Signal Processing, Vol. 24, No. 4, pp. 1049-1067. https://doi.org/10.1016/j.ymssp.2009.09.002
  10. Zvokelj, M., Zupan, S. and Prebil, I., 2011, Non-linear Multivariate and Multiscale Monitoring and Signal Denoising Strategy Using Kernel Principal Component Analysis Combined with Ensemble Empirical Mode Decomposition Method, Mechanical Systems and Signal Processing, Vol. 25, No. 7, pp. 2631-2653. https://doi.org/10.1016/j.ymssp.2011.03.002
  11. Huang, N. E., Shen Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., 1998, The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis, Proceeding of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 454, No. 1971, pp. 903-995. https://doi.org/10.1098/rspa.1998.0193
  12. Huang, N. E. and Shen, S. S. P., ed. 2005, Hilbert-Huang Transform and Its Applications, World Scientific Publishing Co. Pte. Ltd., Singapore, 360pp.
  13. Huang, N. E. and Attoh-Okine, N. O., ed. 2005, Hilbert-Huang Transform in Engineering, CRC Press, 313pp.
  14. Guanlei, X., Xiaotong, W. and Xiaogan, X., 2009, Time-varying Frequency-shifting Signal-assisted Empirical Mode Decomposition Method for AM-FM Signals, Mechanical Systems and Signal Processing, Vol. 23, No. 8, pp. 2458-2469. https://doi.org/10.1016/j.ymssp.2009.06.006
  15. Huang, N. E., Shen, Z., R. and Long, S., 1999, A New View of Nonlinear Water Waves - the Hilbert Spectrum, Annual Review of Fluid Mechanic, Vol. 31, pp. 417-457. https://doi.org/10.1146/annurev.fluid.31.1.417
  16. Wu, Z. and Huang, N. E., 2009, Ensemble Empirical Mode Decomposition: a Noise-assisted Data Analysis Method, Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1-41. https://doi.org/10.1142/S1793536909000047
  17. Wu, Z., Huang, N. E., 2004, Ensemble Empirical Mode Decomposition: A Noise-assisted Data Analysis Method, Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1-41.
  18. Lei, Y., He, Z. and Zi, Y., 2009, Application of the EEMD Method to Rotor Fault Diagnosis of Rotating Machinery, Mechanical Systems and Signal Processing, Vol. 23, No. 4, pp. 1327-1338. https://doi.org/10.1016/j.ymssp.2008.11.005
  19. Zhang, J., Yan, R., Gao, R. X. and Feng, Z., 2010, Performance Enhancement of Ensemble Empirical Mode Decomposition, Mechanical Systems and Signal Processing, Vol. 24, No. 7, pp. 2104- 2123. https://doi.org/10.1016/j.ymssp.2010.03.003

Cited by

  1. Development of Acoustic Emission(AE) Sensor for Prognosis Detection of Bearing Fault vol.24, pp.6, 2014, https://doi.org/10.5050/KSNVE.2014.24.6.429
  2. Low speed bearings fault detection and size estimation using instantaneous angular speed vol.22, pp.15, 2016, https://doi.org/10.1177/1077546314560600