DOI QR코드

DOI QR Code

Optimization of Ohmic Contact Metallization Process for AlGaN/GaN High Electron Mobility Transistor

  • Wang, Cong (Department of Electrical Engineering, Kwangwoon University) ;
  • Cho, Sung-Jin (Department of Electrical Engineering, Kwangwoon University) ;
  • Kim, Nam-Young (Department of Electrical Engineering, Kwangwoon University)
  • Received : 2012.05.18
  • Accepted : 2012.12.14
  • Published : 2013.02.25

Abstract

In this paper, a manufacturing process was developed for fabricating high-quality AlGaN/GaN high electron mobility transistors (HEMTs) on silicon carbide (SiC) substrates. Various conditions and processing methods regarding the ohmic contact and pre-metal-deposition $BCl_3$ etching processes were evaluated in terms of the device performance. In order to obtain a good ohmic contact performance, we tested a Ti/Al/Ta/Au ohmic contact metallization scheme under different rapid thermal annealing (RTA) temperature and time. A $BCl_3$-based reactive-ion etching (RIE) method was performed before the ohmic metallization, since this approach was shown to produce a better ohmic contact compared to the as-fabricated HEMTs. A HEMT with a 0.5 ${\mu}m$ gate length was fabricated using this novel manufacturing process, which exhibits a maximum drain current density of 720 mA/mm and a peak transconductance of 235 mS/mm. The X-band output power density was 6.4 W/mm with a 53% power added efficiency (PAE).

Keywords

References

  1. M. Faqir, G. Verzellesi, G. Meneghesso, E. Zanoni, and F. Fantini, IEEE Trans. Electron Devices 55, 1592 (2008) [DOI: http:// dx.doi.org/10.1109/TED.2008.924437].
  2. S. Y. Park, T. H. Lee, and M. J. Kim, Trans. Electr. Electron. Mater. 11, 49 (2010) [DOI: http://dx.doi.org/10.4313/TEEM.2010.11.2.049].
  3. Y. S. Kim, O. G. Seok, M. K. Han, and M. W. Ha, Trans. Electr. Electron. Mater. 12, 148 (2011) [DOI: http://dx.doi.org/10.4313/ TEEM.2011.12.4.148].
  4. M. Werquin, C. Gaquiere, Y. Guhel, N. Vellas, D. Theron et al, Electron. Lett. 41, 46 (2005) [DOI: http://dx.doi.org/10.1049/ el:20056735].
  5. S. Arulkumaran, T. Egawa, and H. Ishikawa, Solid State Electron 49, 1632 (2005) [DOI: http://dx.doi.org/10.1016/ j.sse.2005.08.014].
  6. Y. Liu, T. Egawa, and H. Jiang, Electron. Lett. 42, 884 (2006) [DOI: http://dx.doi.org/10.1049/el:20061150].
  7. S. Jia, Y. Dikme, D. Wang, K. J. Chen, and K. M. Lau, IEEE Electron Device Lett. 26, 130 (2005) [DOI: http://dx.doi.org/10.1109/ LED.2004.842647].
  8. S. Joblot, Y. Cordier, F. Semond, P. Lorenzini, S. Chenot et al, Electron. Lett. 42, 117 (2006) [DOI: http://dx.doi.org/10.1049/ el:20063688].
  9. C. Wang and N. Y. Kim, Nanoscale Res. Lett. 7, 107 (2012) [DOI: http://dx.doi.org/10.1186/1556-276X-7-107].
  10. J. W. Lee, V. Kumar, and I. Adesida, Jpn. J. Appl. Phys. 45, 13 (2005) [DOI: http://dx.doi.org/10.1143/JJAP.45.13].
  11. N. Sarazin, E. Morvan, M. A. di Forte Poisson, M. Oualli, C. Gaquiere et al, IEEE Electron Device Lett. 31, 11 (2010) [DOI: http://dx.doi.org/10.1109/LED.2009.2035145].
  12. C. Wang, W. S. Lee, S. J. Cho, and N. Y. Kim, Electron. Lett. 48, 405 (2012) [DOI: http://dx.doi.org/10.1049/el.2012.0130].
  13. M. Piazza, C. Dua, M. Oualli, E. Morvan, and D. Carisetti, Microelectron. Reliab. 49, 1222 (2009) [DOI: http://dx.doi.org/10.1016/j.microrel.2009.06.043].
  14. R. M. Gong, J. Y. Wang, S. H. Liu, Z. H. Dong, M. Yu et al, Appl. Phys. Lett. 97, 062115 (2010) [DOI: http://dx.doi. org/10.1063/1.3479928].
  15. W. S. Lau, J. B. H. Tan, and B. P. Singh, Microelectron. Reliab. 49, 558 (2009). DOI: 10.1016/j.microrel.2009.02.010
  16. D. Buttari, A. Chini, G. Meneghesso, E. Zanoni, B. Moran et al, IEEE Electron Device Lett. 23, 76 (2002) [DOI: http://dx.doi. org/10.1109/55.981311].
  17. J. C. Gerbedoen, A. Soltani, S. Joblot, J. C. D. Jaeger, C. Gaquiere et al, IEEE Trans. Electron Devices 57, 1497 (2010) [DOI: http:// dx.doi.org/10.1109/TED.2010.2048792].
  18. A. Minko, V. Hoel, E. Morvan, B. Grimbert, A. Soltani, E. Delos et al, IEEE Electron Device Lett. 25, 453 (2004). DOI: 10.1109/ LED.2004.830272
  19. K. D. Chabak, J. K. Gillespie, V. Miller, A. Crespo, J. Roussos et al, IEEE Electron Device Lett. 31, 99 (2010) [DOI: http://dx.doi. org/10.1109/LED.2009.2036574].
  20. C. Wang, Y. L. He, X. F. Zheng, Y. Hao, X. H. Ma, and J. C. Zhang, J. Semiconductors 33, 034003 (2012) [DOI: http://dx.doi. org/10.1088/1674-4926/33/3/034003].
  21. X. L. Wang, G. X. Hu, Z. Y. Ma, J. X. Ran, C. M. Wang et al J. Cryst. Growth 298, 835 (2007) [DOI: http://dx.doi.org/10.1016/ j.jcrysgro.2006.10.219].
  22. N. Defrance, V. Hoel, Y. Douvry, J. C. D. Jaeger, C. Gaquiere et al, IEEE Electron Device Lett. 30, 596 (2009) [DOI: http://dx.doi.org/10.1109/LED.2009.2019972].

Cited by

  1. Optimization of ohmic contact for AlGaNGaN HEMT by introducing patterned etching in ohmic area vol.129, 2017, https://doi.org/10.1016/j.sse.2016.12.001
  2. Superlattice structure modeling and simulation of High Electron Mobility Transistor for improved performance vol.64, 2013, https://doi.org/10.1016/j.spmi.2013.10.009