DOI QR코드

DOI QR Code

Effects of Nano-silica/Nano-alumina on Mechanical and Physical Properties of Polyurethane Composites and Coatings

  • Swain, Sarojini (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Sharma, Ram Avatar (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Bhattacharya, Subhendu (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.) ;
  • Chaudhary, Lokesh (Department of Advanced Material Process Technology Centre, Crompton Greaves Ltd.)
  • Received : 2012.09.17
  • Accepted : 2012.11.22
  • Published : 2013.02.25

Abstract

The present approach shows the use of nano-silica/nano-alumina in polyurethane (PU) matrix, which lead to significant improvements in the mechanical and thermal properties of the nano-composite. It is observed that with incorporation of 1% of nano-alumina into the PU matrix, there is an improvement in the tensile strength of around 50%, and for nano-silica the improvement is around 41%, at the same concentration. The morphological data shows that above 3% of the nano particles there are agglomerations in the nanocomposite. Again with the absorption of moisture, there is a decrease in the thermal and mechanical properties of the PU resin, but in this research work it is observed that with the incorporation of the nano particles, in the presence of absorbed moisture there is an improvement in mechanical and thermal properties of the composite, over that of the PU matrix.

Keywords

References

  1. Fernando R.H.; JCT CoatingsTech, 1 (5), 32-38 (2004) ]http://lib3.dss.go.th/fulltext/abstract/T1/T1_5.pdf].
  2. Paul D.R..; Robeson L.M.; / Polymer 49 (2008) 3187-3204 [DOI: http://dx.doi.org/10.1016/j.polymer.2008.04.017].
  3. Piin Li; Comer Jeffery; Forster M Aaron; Hu Haiqing,; Floryancic Bryce; J Coat Tech, 5, 419 (2008) [DOI: http://dx.doi. org/10.1007/s11998-008-9110-z].
  4. Vanier N.R.; et al. 2004, US Patent #6,770,705 B2. books.google.com/patents/US6770705.pdf
  5. Sharma R. A.; et al. Trans. Electr. Electron. Mater. 13(1) 31 (2012) [DOI: http://dx.doi.org/10.4313/TEEM.2012.13.1.31].
  6. Novak B.M.; Adv. Mater., 5, 422-433 (1993) [DOI: http://dx.doi.org/10.1002/adma.19930050603].
  7. Zhou Shu-xue; Wu Li-min; Sun Jian; Shen Wei-dian; J Appl Polym Sci, 88, 189-193 (2003) [DOI: http://dx.doi.org/10.1002/app.11624. ISSN: 0021-8995].
  8. Petrovic Z.S.; Javni I.; Waddon, A.; Banhegyi, G.J.; Appl Polym Sci , 76, 133-151 (2000) [DOI: http://dx.doi.org/10.1002/(SICI)1097-4628(20000411)76:2<133::AID-APP3>3.0.CO;2-K].
  9. Nehete, K., Sharma, R.A.; Chaudhari, L.; Bhattacharya, S.; Singal, V.; D'Melo, D., Dielectrics and Electrical Insulation, IEEE Transactions on, 19, Issue: 2, 373-382, (2012) [DOI: http://dx.doi.org/10.1109/TDEI.2012.6180228].
  10. Khudyakoy I. V.. ; et al ., Designed Monomers and Polymers 12 (2009) 279-290 [DOI : http://dx.doi.org/10.1163/156855509X448253].
  11. Sen S.; Nugay N.; J. Appl. Polym. Sci., Vol. 77 (5), 1128 - 1136 (2000) [DOI: http://dx.doi.org/10.1002/1097 -4628(20000801)77:5%3C1128::AID-APP21%3E3.3.CO;2-4].
  12. Park J.-J.; et al.Trans. Electr. Electron. Mater. 12(3) 98 (2011) [DOI: http://dx.doi.org/10.4313/TEEM.2011.12.3.98].
  13. Cai et al.; - eXPRESS Polymer Letters Vol.1, No.1, 2-7 (2007) [DOI: http://dx.doi.org/10.3144/expresspolymlett.2007.2].
  14. M.A. Shenoy; D.J. D'Melo; Express Polym. Lett. 1, 622 (2007) [DOI: http://dx.doi.org/10.3144/expresspolymlett.2007.85].

Cited by

  1. The effects of nano-silica/nano-alumina on fatigue behavior of glass fiber-reinforced epoxy composites vol.51, pp.12, 2017, https://doi.org/10.1177/0021998316661870
  2. Mechanical properties of UV-cured cellulose nanocrystal (CNC) nanocomposite coating for wood furniture vol.104, 2017, https://doi.org/10.1016/j.porgcoat.2016.11.031
  3. Effect of Al $$_{2}\mathrm{O}_{3}$$ 2 O 3 Nanoparticles on the Mechanical and Physical Properties of Epoxy Composite 2017, https://doi.org/10.1007/s13369-017-2955-7
  4. Optical and mechanical properties of transparent acrylic based polyurethane nano Silica composite coatings vol.77, pp.7, 2014, https://doi.org/10.1016/j.porgcoat.2014.04.007
  5. Fully-Enclosed Ceramic Micro-burners Using Fugitive Phase and Powder-based Processing vol.6, pp.1, 2016, https://doi.org/10.1038/srep31336
  6. Development and Evaluation of Nano-Silica Dispersed Polyurethane Based Coatings for Improved Anti-Graffiti and Scratch Resistance vol.05, pp.12, 2015, https://doi.org/10.4236/ojapps.2015.512077
  7. Effects of nano-layered silicates on mechanical and chemical properties of acrylic-melamine automotive clear coat vol.46, pp.5, 2017, https://doi.org/10.1108/PRT-07-2016-0077
  8. Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior vol.75, pp.2, 2018, https://doi.org/10.1007/s00289-017-2067-2
  9. Adhesion performance and film formation of acrylic emulsion coating on medium density fiberboard treated with Ar plasma vol.70, 2016, https://doi.org/10.1016/j.ijadhadh.2016.08.002
  10. Acoustical, damping and thermal properties of polyurethane/poly(methyl methacrylate)-based semi-interpenetrating polymer network foams vol.47, pp.5, 2018, https://doi.org/10.1080/14658011.2018.1468146
  11. In-Situ Incorporation of Alkyl-Grafted Silica into Waterborne Polyurethane with High Solid Content for Enhanced Physical Properties of Coatings vol.10, pp.5, 2018, https://doi.org/10.3390/polym10050514
  12. Study of Mechanical, Optical, and Electrical Behaviors of Calcium Alginate/Poly(vinyl alcohol)–Vanadium Pentoxide Bionanocomposite Films vol.26, pp.4, 2018, https://doi.org/10.1007/s13233-018-6040-0
  13. The Effect of the Increase in Impact Strength of Epoxy Composites by Agglomerated Nanoparticles vol.13, pp.7-8, 2018, https://doi.org/10.1134/S1995078018040110