DOI QR코드

DOI QR Code

Desorption and Regeneration Characteristics for Previously Adsorbed Silver Ions onto Crab Shells Using Nitric Acid

질산을 이용한 게껍질에 흡착된 은 이온의 탈착 및 재생 특성

  • Jeon, Choong (Department of Biochemical Engineering, Gangneung-Wonju National University)
  • 전충 (강릉원주대학교 생명화학공학과)
  • Received : 2013.11.13
  • Accepted : 2013.12.11
  • Published : 2013.12.30

Abstract

A study on desorption and regeneration characteristics for silver ions adsorbed onto crab shells was carried out by means of Nitric acid soultion which was selected as the best desorbing agent. Desorption efficiency for silver ions was the highest as about 96% at the 1.0M of Nitric acid concentration. Also, silver ions was almost desorbed below 1.0 of S/L(mg/mL) ratio which is defined as the ratio of adding amount of adsorbent and volume of desorbing agent and most of desorption process was completed within 60min. And removal efficiency of reused crab shells for silver ions was maintained as about 92% until the 2nd cycle.

게껍질에 흡착된 은 이온의 탈착과 재생특성에 관한 연구가 최적의 탈착제로서 선정된 질산을 이용하여 수행되어졌다. 1.0M의 질산농도에서 은 이온의 탈착율은 96%로서 가장 높았다. 또한, 투입된 흡착제의 양과 탈착제의 부피로서 정의되는 S/L비가 1.0보다 작을 때에는 대부분의 은 이온이 탈착되어졌으며 대부분의 탈착 공정은 60분 내에 일어났다. 그리고 재사용된 게껍질을 흡착제로 다시 이용하였을 때 2회까지는 92%의 은 이온 탈착율을 유지하였다.

Keywords

Acknowledgement

Supported by : 한국에너지 기술평가원(KETEP)

References

  1. Beolchini, F., Pagnanelli, F., Toro, L. and Veglio, F., "Biosorption of copper by sephaerotilus natans immobilised in polysulfone matrix: Equilibrium and kinetic analysis", Hydrometallugy., 70, pp. 101-112. (2003). https://doi.org/10.1016/S0304-386X(03)00049-5
  2. Sekhar, K. C., Kamala, C. T., Chary, N. S., Sastry, A. R. K., Rao, T. N. and Vairamani, M., "Removal of lead from aqueous solutions using an immobilized biomaterial derived from a plant biomass", J. Hazard. Mater., 108, pp. 111-117. (2004). https://doi.org/10.1016/j.jhazmat.2004.01.013
  3. Njikam, E. and Schiewer, S., "Optimization and kinetic modeling of cadmium desorption from citrus peels: A process for biosorbent regeneration", J. Hazard. Mater., 213-214(1), pp. 242-248. (2012). https://doi.org/10.1016/j.jhazmat.2012.01.084
  4. Mata, Y. N., Blazquez, M. L., Ballester, A., Gonzalez, F. and Munoz, J. A., "Studies on sorption, desorption, regeneration and reuse of sugar-beet pectin gels for heavy metal removal", J. Hazard. Mater., 178(1- 3), pp. 243-248. (2010). https://doi.org/10.1016/j.jhazmat.2010.01.069
  5. Jeon, C., "Adsorption characteristics of waste crab shells for silver ions in industrial wastewater", Kor. J. Chem. Eng., In press. (2013).
  6. Jeon, C. and Kwon, T. N., "Desorption and regeneration characteristics for previously adsorbed indium ions to phosphorylated sawdust," Environ. Eng. Res., 17(2), pp. 65-67. (2012). https://doi.org/10.4491/eer.2012.17.2.065
  7. Dawson, R. M. C., Eliott, D. C., Eliott, W. H. and Jones, K. M., : in Data for biochemical research (3rd ed.) Oxford, Oxford Science Publication (1996).
  8. Mustafa, G., Singh, B. and Kookana, R. S., "Cadmium adsorption and desorption behavior on goethite at low equilibrium concentration", Chemosphere., 57(10), pp. 1325-1333. (2004). https://doi.org/10.1016/j.chemosphere.2004.08.087
  9. Jeon, C. and Park, K. H., "Adsorption and desorption characteristics of mercury(II) ions using aminatrd chitosan bead", Water Res., 39, pp. 3938-3944.(2005). https://doi.org/10.1016/j.watres.2005.07.020
  10. Volesky, B., : Biosorption of heavy metals: Environmental impact of heavy metals (1st ed.) CRC Press, Boca Raton, FL (1990).