DOI QR코드

DOI QR Code

Expression of procaspase 3 and activated caspase 3 and its relevance in hormone-responsive gallbladder carcinoma chemotherapy

  • Maurya, Sanjeev Kumar (Department of Biotechnology, Invertis University) ;
  • Tewari, Mallika (Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University) ;
  • Sharma, Bechan (Department of Biochemistry, Allahabad University) ;
  • Shukla, Hari Shanker (Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University)
  • Received : 2012.12.28
  • Accepted : 2013.05.27
  • Published : 2013.09.01

Abstract

Background/Aims: The higher incidence of gallbladder cancer (GBC) in females has been accredited to the involvement of hormones. The clinical implications of sex hormone receptors in GBC are well established. Cysteine proteases (such as caspase-3-9, etc.) are known to play a central role in the apoptotic pathway. Of these, the downstream enzyme caspase-3 is often activated in the apoptotic pathway. The aim of this work was to examine the status of apoptosis (which directly correlated with the level of active caspase-3) in hormone-responsive GBC. Methods: We used 10 androgen receptor (AR)-positive, 14 estrogen receptor (ER)-positive, 12 HER/neu-positive, eight triple positive, and 10 triple negative malignant GBC human tissue samples. We isolated the total cellular protein from tumor tissues and carried out Western blotting using antipro-caspase-3 and anti-activated caspase-3 antibodies. Results: ER and HER/neu-positive GBC exhibited high caspase-3 activity and low procaspase-3 activity, whereas AR-positive GBC showed no significant level of apoptosis. We also evaluated the apoptosis status of triple positive GBC and triple negative GBC, and found significant apoptosis in triple positive GBC. Conclusions: The results indicate that ER and HER/neu-positive GBCs had active apoptosis, whereas AR-positive GBC was highly resistant to apoptosis.

Keywords

References

  1. Gracie WA, Ransohoff DF. The natural history of silent gallstones: the innocent gallstone is not a myth. N Engl J Med 1982;307:798-800. https://doi.org/10.1056/NEJM198209233071305
  2. Shaffer EA. Epidemiology and risk factors for gallstone disease: has the paradigm changed in the 21st century? Curr Gastroenterol Rep 2005;7:132-140. https://doi.org/10.1007/s11894-005-0051-8
  3. Tewari M, Kumar V, Mishra RR, Shukla HS. Gallbladder carcinoid masquerading as gallbladder carcinoma. Hepatobiliary Pancreat Dis Int 2009;8:326-328.
  4. Dhulkotia A, Kumar S, Kabra V, Shukla HS. Aberrant gallbladder situated beneath the left lobe of liver. HPB (Oxford) 2002;4:39-42. https://doi.org/10.1080/136518202753598726
  5. Shukla HS, Awasthi K, Naithani YP, Gupta SC. A clinico- pathological study of carcinoma of the gall bladder. Indian J Cancer 1981;18:198-201.
  6. Ohnami S, Nakata H, Nagafuchi Y, Zeze F, Eto S. Estrogen receptors in human gastric, hepatocellular, and gallbladder carcinomas and normal liver tissues. Gan To Kagaku Ryoho 1988;15:2923-2928.
  7. Nakamura S, Muro H, Suzuki S. Estrogen and progesterone receptors in gallbladder cancer. Jpn J Surg 1989;19:189-194. https://doi.org/10.1007/BF02471584
  8. Barreto SG, Haga H, Shukla PJ. Hormones and gallbladder cancer in women. Indian J Gastroenterol 2009;28:126-130. https://doi.org/10.1007/s12664-009-0046-8
  9. Egawa N, Tu Y, Kamisawa T. Why is gallbladder cancer more frequent in women than in men? Nihon Rinsho 2006;64 Suppl 1:344-347.
  10. Sumi K, Matsuyama S, Kitajima Y, Miyazaki K. Loss of estrogen receptor beta expression at cancer front correlates with tumor progression and poor prognosis of gallbladder cancer. Oncol Rep 2004;12:979-984.
  11. Ko CY, Schmit P, Cheng L, Thompson JE. Estrogen receptors in gallbladder cancer: detection by an improved immunohistochemical assay. Am Surg 1995;61:930-933.
  12. Chen A, Huminer D. The role of estrogen receptors in the development of gallstones and gallbladder cancer. Med Hypotheses 1991;36:259-260. https://doi.org/10.1016/0306-9877(91)90145-O
  13. Yamamoto M, Nakajo S, Tahara E. Immunohistochemical analysis of estrogen receptors in human gallbladder. Acta Pathol Jpn 1990;40:14-21.
  14. Gupta P, Agarwal A, Gupta V, Singh PK, Pantola C, Amit S. Expression and clinicopathological significance of estrogen and progesterone receptors in gallbladder cancer. Gastrointest Cancer Res 2012;5:41-47.
  15. Park SK, Andreotti G, Rashid A, et al. Polymorphisms of estrogen receptors and risk of biliary tract cancers and gallstones: a population-based study in Shanghai, China. Carcinogenesis 2010;31:842-846. https://doi.org/10.1093/carcin/bgq038
  16. Srivastava A, Sharma KL, Srivastava N, Misra S, Mittal B. Significant role of estrogen and progesterone receptor sequence variants in gallbladder cancer predisposition: a multi-analytical strategy. PLoS One 2012;7:e40162. https://doi.org/10.1371/journal.pone.0040162
  17. Meyer TE, O'Brien TG, Andreotti G, et al. Androgen receptor CAG repeat length and risk of biliary tract cancer and stones. Cancer Epidemiol Biomarkers Prev 2010;19:787-793. https://doi.org/10.1158/1055-9965.EPI-09-0973
  18. Zacks SL, Sandler RS, Rutledge R, Brown RS Jr. A population- based cohort study comparing laparoscopic cholecystectomy and open cholecystectomy. Am J Gastroenterol 2002;97:334-340. https://doi.org/10.1111/j.1572-0241.2002.05466.x
  19. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature 2001;411:342-348. https://doi.org/10.1038/35077213
  20. Johnstone RW, Ruef li AA, Lowe SW. Apoptosis: a link between cancer genetics and chemotherapy. Cell 2002;108:153-164. https://doi.org/10.1016/S0092-8674(02)00625-6
  21. Slee EA, Harte MT, Kluck RM, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 1999;144:281- 292. https://doi.org/10.1083/jcb.144.2.281
  22. Keane MM, Ettenberg SA, Nau MM, Russell EK, Lipkowitz S. Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 1999;59:734- 741.
  23. Bellarosa D, Ciucci A, Bullo A, et al. Apoptotic events in a human ovarian cancer cell line exposed to anthracyclines. J Pharmacol Exp Ther 2001;296:276-283.
  24. Kottke TJ, Blajeski AL, Martins LM, et al. Comparison of paclitaxel-, 5-fluoro-2'-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis: evidence for EGF-induced anoikis. J Biol Chem 1999;274:15927-15936. https://doi.org/10.1074/jbc.274.22.15927
  25. Suzuki A, Kawabata T, Kato M. Necessity of interleukin- 1beta converting enzyme cascade in taxotere-initiated death signaling. Eur J Pharmacol 1998;343:87-92. https://doi.org/10.1016/S0014-2999(97)01520-3
  26. Thornberry NA, Lazebnik Y. Caspases: enemies within. Science 1998;281:1312-1316. https://doi.org/10.1126/science.281.5381.1312
  27. Cryns V, Yuan J. The cutting edge: caspases in apoptosis and disease. In: Lockshin RA, Zakeri Z, Tilly JL, eds. When Cells Die: A Comprehensive Evaluation of Apoptosis and Programmed Cell Death. New York: Wiley- Liss, 1998:177-210.
  28. Maurya SK, Tewari M, Kumar M, Thakur MK, Shukla HS. Expression pattern of tumor endothelial marker 8 protein in gallbladder carcinomas. Asian Pac J Cancer Prev 2011;12:507-512.
  29. Horvitz HR, Sternberg PW, Greenwald IS, Fixsen W, Ellis HM. Mutations that affect neural cell lineages and cell fates during the development of the nematode Caenorhabditis elegans. Cold Spring Harb Symp Quant Biol 1983;48 Pt 2:453-463. https://doi.org/10.1101/SQB.1983.048.01.050
  30. Janicke RU, Ng P, Sprengart ML, Porter AG. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J Biol Chem 1998;273:15540-15545. https://doi.org/10.1074/jbc.273.25.15540
  31. Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD. Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 2001;61:348-354.
  32. Kwon KB, Park EK, Ryu DG, Park BH. D4-GDI is cleaved by caspase-3 during daunorubicin-induced apoptosis in HL-60 cells. Exp Mol Med 2002;34:32-37. https://doi.org/10.1038/emm.2002.5
  33. Henkels KM, Turchi JJ. Cisplatin-induced apoptosis proceeds by caspase-3-dependent and -independent pathways in cisplatin-resistant and -sensitive human ovarian cancer cell lines. Cancer Res 1999;59:3077-3083.
  34. Blanc C, Deveraux QL, Krajewski S, et al. Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 2000;60:4386-4390.
  35. Cummings BS, Schnellmann RG. Cisplatin-induced renal cell apoptosis: caspase 3-dependent and -independent pathways. J Pharmacol Exp Ther 2002;302:8-17. https://doi.org/10.1124/jpet.302.1.8
  36. Kishimoto S, Kawazoe Y, Ikeno M, Fukushima S, Takeuchi Y. Continuous exposure to low-dose cisplatin and apoptosis. Biol Pharm Bull 2005;28:1954-1957. https://doi.org/10.1248/bpb.28.1954
  37. Wong SC, Chan JK, Lee KC, Hsiao WL. Differential expression of p16/p21/p27 and cyclin D1/D3, and their relationships to cell proliferation, apoptosis, and tumour progression in invasive ductal carcinoma of the breast. J Pathol 2001;194:35-42. https://doi.org/10.1002/path.838
  38. Mommers EC, van Diest PJ, Leonhart AM, Meijer CJ, Baak JP. Balance of cell proliferation and apoptosis in breast carcinogenesis. Breast Cancer Res Treat 1999;58:163-169. https://doi.org/10.1023/A:1006396103777
  39. Zhao H, Morimoto T, Sasa M, Tanaka T, Izumi K. Immunohistochemical expression of uPA, PAI-1, cathepsin D and apoptotic cells in ductal carcinoma in situ of the breast. Breast Cancer 2002;9:118-126. https://doi.org/10.1007/BF02967576
  40. Parton M, Krajewski S, Smith I, et al. Coordinate expression of apoptosis-associated proteins in human breast cancer before and during chemotherapy. Clin Cancer Res 2002;8:2100-2108.

Cited by

  1. Endothelin B receptor-mediated encephalopathic events in mouse sepsis model vol.118, pp.2, 2013, https://doi.org/10.1016/j.lfs.2014.03.012
  2. Upregulation of microRNA-492 induced by epigenetic drug treatment inhibits the malignant phenotype of clear cell renal cell carcinoma in vitro vol.12, pp.1, 2013, https://doi.org/10.3892/mmr.2015.3550
  3. Combination of L-gossypol and low-concentration doxorubicin induces apoptosis in human synovial sarcoma cells vol.12, pp.4, 2013, https://doi.org/10.3892/mmr.2015.4127
  4. HER2/HER3 pathway in biliary tract malignancies; systematic review and meta-analysis: a potential therapeutic target? vol.36, pp.1, 2013, https://doi.org/10.1007/s10555-016-9645-x
  5. miRNA-1284 inhibits cell growth and induces apoptosis of lung cancer cells vol.16, pp.3, 2013, https://doi.org/10.3892/mmr.2017.6949
  6. The Small Matter of a Red Ox, a Particularly Sensitive Pink Cat, and the Quest for the Yellow Stone of Wisdom vol.4, pp.5, 2013, https://doi.org/10.1007/s40495-018-0152-3
  7. miR-3188 Regulates Cell Proliferation, Apoptosis, and Migration in Breast Cancer by Targeting TUSC5 and Regulating the p38 MAPK Signaling Pathway vol.26, pp.3, 2013, https://doi.org/10.3727/096504017x14953948675421
  8. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential vol.14, pp.11, 2013, https://doi.org/10.1021/acschembio.9b00338
  9. Oroxylin A Exerts Its Antitumor Effects in Human Gallbladder Cancer via Inhibition of the PTEN/PI3K/AKT Signaling Pathway vol.43, pp.10, 2013, https://doi.org/10.1248/bpb.b20-00262