DOI QR코드

DOI QR Code

토양 서식 미생물을 이용한 가축사체 매몰지 토양유래 용존 유기물 분해

Biodegradation of Dissolved Organic Matter Derived from Animal Carcass Disposal Soils Using Soil Inhabited Bacteria

  • 박정안 (서울대학교 환경기능성물질 및 바이오콜로이드연구실) ;
  • 강진규 (서울대학교 환경기능성물질 및 바이오콜로이드연구실) ;
  • 김재현 (서울대학교 환경기능성물질 및 바이오콜로이드연구실) ;
  • 김성배 (서울대학교 지역시스템공학과)
  • Park, Jeong-Ann (Environmental Functional Materials and Biocolloids Laboratory, Seoul National University) ;
  • Kang, Jin-Kyu (Environmental Functional Materials and Biocolloids Laboratory, Seoul National University) ;
  • Kim, Jae-Hyun (Environmental Functional Materials and Biocolloids Laboratory, Seoul National University) ;
  • Kim, Song-Bae (Department of Rural Systems Engineering, Seoul National University)
  • 투고 : 2013.10.03
  • 심사 : 2013.11.13
  • 발행 : 2013.12.30

초록

본 연구의 목적은 가축사체 매몰지 토양에서 추출된 미생물을 이용하여, 가축사체 매몰지 오염 토양 유래 유기탄소의 분해 효과를 분석하고, 분해에 관여하는 미생물의 종을 규명하는 것이다. 경기도 안성에 위치한 가축 매몰지 토양 유래 용존 유기탄소를 대상으로 토양 서식 미생물의 생분해율을 평가한 결과(56일 동안), 1번 용액(초기 용존 유기탄소 농도 = 19.88 mg C/L)에서는 13일 이내에 48%의 용존 유기탄소가 감소하였으며, 56일째 용존 유기탄소는 $8.8{\pm}0.4$ mg C/L로 56% 분해되었다. 2번 용액(초기 용존 유기탄소 농도 = 19.80 mg C/L)에서도 초기 13일 이내에 용존 유기탄소 농도가 급격히 감소하였으며, 56일째 용존 유기탄소는 $6.0{\pm}1.6$ mg C/L로 70%가 분해되었다. 생분해 실험과정에서, 전체 유기탄소 물질에서 방향족 탄소구조의 비율을 나타낸 지표인 $SUVA_{254}$값은 용존 유기탄소와는 다르게, 일정기간(21일) 동안 증가하다가 감소하는 경향을 나타냈다. $SUVA_{254}$값은 1번 용액과 2번 용액 모두, 21일째 가장 높은 값을 나타내었다. 생분해 실험 14일째 미생물 분석 결과, 토양에서 쉽게 발견되는 Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. 등 미생물이 검출되었다. 그리고, 56일째 미생물 분석 결과, Pseudomonas veronii가 우점종으로 나타났다.

The aim of this study was to investigate the biodegradation of dissolved organic matter derived from animal carcass disposal soil using soil inhabited bacteria and to identify the bacteria involved in the biodegradation. The two soils were obtained from the animal carcass burial sites located in Anseong, Gyeonggi-do, Korea. The results indicated that during the biodegradation experiments (56 days), 48% of dissolved organic carbon (DOC) was mineralized within 13 days in soil-derived solution 1 (initial DOC = 19.88 mgC/L), and the DOC concentration at 56 days was $8.8{\pm}0.4$ mg C/L, indicating 56% mineralization of DOC. In soil-derived solution 2 (initial DOC = 19.80 mgC/L), DOC was mineralized drastically within 13 days, and the DOC concentration was decreased to $6.0{\pm}0.4$ mg C/L at 56 days (76% mineralization of DOC). Unlike DOC value, the specific UV absorbance ($SUVA_{254}$) value, an indicator of proportion of aromatic structures in total organic carbon, tended to increase until 21 days and then decreased thereafter. The $SUVA_{254}$ values in soil-derived solutions 1 and 2 were the highest at 21 days. The microbial analysis demonstrated that Pseudomonas fluorescens, Achromobacter xylosoxidans, Nocardioides simplex, Pseudomonas mandelii, Bosea sp. were detected at 14 days of incubation, whereas Pseudomonas veronii appeared as a dominant species at 56 days.

키워드

참고문헌

  1. Williams, A. P., Gordon, H., Jones, D. L., Strachan, N. J. C., Avery, L. M. and Killham, K., "Leaching of bioluminescent Escherichia coli O157:H7 from sheep and cattle faeces during simulated rainstorm events," J. Appl. Microbiol., 105(5), 1452-1460(2008). https://doi.org/10.1111/j.1365-2672.2008.03898.x
  2. Ministry of Environment, Korea, "Environmental guidelines for animal carcass disposal sites," (2010).
  3. Leenheer, J. A. and Croue, J. P., "Characterizing Aquatic dissolved organic matter," Environ. Sci. Technol., 37(1), 18A-26A(2003). https://doi.org/10.1021/es032333c
  4. Pratt, D. L., "Environmental impact of livestock mortalities burial," M. S. Thesis, University of Saskatchewan, Saskatoon, Canada(2009).
  5. Saadi, I., Borisover, M., Armon, R. and Laor, Y., "Monitoring of effluent DOM biodegradation using fluorescence, UV and DOC measurements," Chemosphere, 63, 530-539 (2006). https://doi.org/10.1016/j.chemosphere.2005.07.075
  6. Cheng, Z., Sun, P., Jiang, Y., Zhang, L. and Chen, J., "Kinetic analysis and bacterium metabolization of $\alpha$-pinene by a novel identified Pseudomonas sp. strain," J. Environ. Sci., 24(10), 1806-1815(2012). https://doi.org/10.1016/S1001-0742(11)61009-7
  7. Kalbitz, K., Schmerwits, J., Schwesig, D. and Matzner, E., "Biodegradation of soil-derived dissolved organic matter as related to its properties," Geoderma, 113, 273-291(2003). https://doi.org/10.1016/S0016-7061(02)00365-8
  8. Hongve, D., Van Hees, P. A. W. and Lundstorm, U. S., "Dissolved components in precipitation water percolated through forest litter," Eur. J. Soil Sci., 51(4), 667-677(2000). https://doi.org/10.1046/j.1365-2389.2000.00339.x
  9. Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R. and Mopper, K., "Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon," Environ. Sci. Technol., 37(20), 4702-4708(2003). https://doi.org/10.1021/es030360x
  10. Lane, D. J., "16S/23S rRNA sequencing. In: stackebrandt E. Goodfellow M (eds) Nucleic acid techniques in bacterial systematic," Wiley, Chichester, pp. 115-175(1991).
  11. Park, J. A., Choi, N. C. and Kim, S. B., "Analysis of microbial communities in animal carcass disposal soils," J. Kor. Soc. Environ. Eng., 35(7), 503-508(2013). https://doi.org/10.4491/KSEE.2013.35.7.503
  12. Park, M. H., Hur, J., "Changes in spectroscopic characteristics and pyrene binding reactivities of dissolved organic matters by biodegradation," J. Korean Soc. Environ. Eng., 30(9), 893-899(2008).
  13. Edzwald, J. K. and Van Benschoten, J. E., "Aluminum coagulation of natural organic matter," Chemical water and wastewater treatment, Hahn, H. H. and Klute, R. (Eds.), Springer Berlin Heidelberg, Berlin, pp. 341-359(1990).
  14. Edzwald, J. K., "Coagulation in drinking water treatment: particles, organics and coagulants," Water Sci. Technol., 27(11), 21-35(1993).
  15. Westerhoff, P. and Pinney, M., "Dissolved organic carbon transformations during laboratory-scale groundwater recharge using lagoon-treated wastewater," Waste Manag., 20(1), 75-83(2000). https://doi.org/10.1016/S0956-053X(99)00277-9
  16. Jung, K. Y. and Hur, J., "Changes in the characteristics of dissolved organic matter by microbial transformation and the subsequent effects on copper binding," J. Kor. Soc. Environ. Eng., 34(1), 49-54(2012). https://doi.org/10.4491/KSEE.2012.34.1.049
  17. Langenbach, T., Maciel, S. J., Neves, B. C., Hagler, A. N., Mano, D. M. and Vugman, N. V., "Pseudomonas fluorescens dynamics in the soil surface to subsurface transect," J. Environ. Sci. Health B., 41(4), 415-425(2006).
  18. Limburg, J., Mure, M. and Klinman, J. P., "Cloning and characterization of histamine dehydrogenase from Nocardioides simplex," Arch. Biochem. Biophys., 436(1), 8-22(2005). https://doi.org/10.1016/j.abb.2004.11.024
  19. Tsutsumi, M., Tsujimura, S., Shirai, O. and Kano, K., "Direct electrochemistry of histamine dehydrogenase from Nocardioides simplex," J. Electroanal. Chem., 625(2), 144-148 (2009). https://doi.org/10.1016/j.jelechem.2008.10.021
  20. Shannon, K. E., Saleh-Lakha, S., Burton, D. L., Zebarth, B. J., Goyer, C. and Trevors, J. T., "Effect of nitrate and glucose addition on denitrification and nitric oxide reductase (cnorB) gene abundance and mRNA levels in Pseudomonas mandelii inoculated into anoxic soil," Antonie Van Leeuwenhoek, 100(2), 183-195(2011). https://doi.org/10.1007/s10482-011-9577-y
  21. Thomas, V., Casson, N. and Greub, G., "New Afipia and Bosea strains isolated from various water sources by amoebal co-culture," Syst. Appl. Microbiol., 30(7), 572-579(2007). https://doi.org/10.1016/j.syapm.2007.06.004
  22. Gibson, D. T. and Subramanian, V., "Microbial degradation of organic compounds," Dekker, New York, pp. 181-252(1984).
  23. Nam, I. H., Chang, Y. S., Hong, H. B. and Lee, Y. E., "A novel catabolic activity of Pseudomonas veronii in biotransformation of pentachlorophenol," Appl. Microbiol. Biotechnol., 62, 284-290(2003). https://doi.org/10.1007/s00253-003-1255-1
  24. Hong, H. B., Nam, I. H., Murugesan, K., Kim, Y. M. and Chang, Y. S., "Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03," Biodegradation, 15(5), 303-313(2004). https://doi.org/10.1023/B:BIOD.0000042185.04905.0d
  25. Field, J. A. and Sierra-Alvarez, R., "Microbial degradation of chlorinated dioxins," Chemosphere, 71(6), 1005-1018(2008). https://doi.org/10.1016/j.chemosphere.2007.10.039
  26. Park, S. Y., Shin, J. H., Kim, M. H. and Kim, M., "Microorganism's characteristics in an ultra thermophilic aerobic composting process," in Proceedings of the 2008 Korean Geo-Environmental Conference, Korean Geo-Environmental Society, Seoul, pp. 93-96(2008).