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Abstract. This research is a continuation of a recent paper due to the first author in [9].

Different from previous results, we investigate the value distribution of difference poly-

nomials of moromorphic functions in this paper. In particular, we are interested in the

existence of zeros of f(z)n(λf(z+ c)m +µf(z)m)− a, where f is a moromorphic function,

n, m are two non-negative integers, and λ, µ are non-zero complex numbers. However, the

proof here is obviously different to the one in [9]. We also study difference polynomials of

entire functions sharing a common value, which improves the result in [10, 13].

1. Introduction

A meromorphic function f(z) means meromorphic in the whole complex plane.
We assume that the reader is familiar with standard symbols and fundamental re-
sults of Nevanlinna Theory [12]. As usual, the abbreviation CM stands for counting
multiplicities, while IM means ignoring multiplicities. We use σ(f) to denote the
order of f(z) and Np(r,

1
f−a ) to denote the counting function of the zeros of f − a,

where an m-fold zero is counted m times if m ≤ p and p times if m > p.

Recently, a number of papers focus on complex difference equations and dif-
ferences analogues of Nevanlinna’s theory. Among these papers, some of them are
devoted to the value distribution and uniqueness of complex difference polynomials,
which can be viewed as difference analogues of corresponding results of differential

* Corresponding Author.
Received October 6, 2011; accepted February 24, 2012.
2010 Mathematics Subject Classification: 30D35, 39A05.
Key words and phrases: meromorphic functions, uniqueness, difference, shift, value distri-
bution, sharing value.
The authors are supported by the NSFC Tianyuan Mathematics Youth Fund (No.
11226094), the NSF of Shandong Province, China(No. ZR2012AQ020 and No.
ZR2010AM030) and the Fund of Doctoral Program Research of University of Jinan (No.
XBS1211).

541



542 Xiaoguang Qi and Jia Dou

polynomials.

In this paper, we investigate the value distributions of difference polynomials of
moromorphic functions, which are supplements of previous results. We also study
the value sharing problem of difference polynomial fn(f − 1)f(z + c), which im-
proves the result in [10, 13].

2. Zeros of Difference Polynomials of Meromorphic Functions

Many mathematicians were interested in the value distribution of different ex-
pressions of a meromorphic function and obtained a lot of fruitful results. Here,
we recall a question posed by Hayman. Let f(z) be a transcendental meromorphic
function, and let n be a positive integer. Hayman [4, Corollary to Theorem 9]
proved that fnf ′ takes every non-zero complex value infinitely often provided that
n ≥ 3. Mues [8, Satz 3] proved that f2f ′ − 1 has infinitely many zeros. Later on,
Bergweiler and Eremenko [1, Theorem 2] showed that ff ′ − 1 has infinitely many
zeros also. For an analogue of the above results in difference polynomials, Laine
and Yang [6, Theorem 2] proved:

Theorem A. Let f be a transcendental entire function with finite order, and let
c be a non-zero complex constant. Then, for n ≥ 2, f(z)nf(z + c) assumes every
non-zero value a ∈ C infinitely often.

Some improvements of Theorem A can be found in [7]. Recently, we studied the
value distribution of f(z)n(λf(z+c)m+µf(z)m) in [9], where n, m are non-negative
integers, and λ, µ are non-zero complex numbers. We obtain the following result
which generalizes some theorems in [6, 7].

Theorem B([9, Theorem 1.2]. Let f be a transcendental entire function with finite
order, c be a non-zero constant, n and m be integers satisfying n ≥ m > 0, and
let λ, µ be two complex numbers such that |λ| + |µ| ≠ 0. If n ≥ 2, then either
f(z)n(λf(z+ c)m+µf(z)m) assumes every non-zero value a ∈ C infinitely often or

f(z) = e
log t
c zg(z), where t =

(
−µ

λ

) 1
m , and g(z) is periodic function with period c.

In [9], we also considered the value distribution of f(z)n + µf(z + c)m, where
m ̸= n.

Theorem C([9, Theorem 1.3]. Let f be a transcendental entire function with finite
order, µ and c be non-zero constants, and let a(z) be a non-zero small function to
f . Suppose that n, m are positive integers such that n > m + 1 (or m > n + 1).
Then the difference polynomial f(z)n+µf(z+ c)m−a(z) has infinitely many zeros.

In the present paper, we improve Theorem B and Theorem C on the condition
that f is a meromorphic function and get the following results.

Theorem 2.1. Let f be a transcendental meromorphic function with finite order
σ(f), c be a non-zero constant, n and m be non-negative integers, and let λ, µ be two
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complex numbers such that λf(z+c)m+µf(z)m ̸= 0. If the exponent of convergence
of the zeros and poles of f satisfies max{λ(f), λ( 1f )} < σ(f) and n ≥ m + 1, then

f(z)n(λf(z + c)m + µf(z)m)− a(z) has infinitely many zeros, where a(z) is a non-
zero small function to f .

Remark 1. If m = 0 and max{λ(f), λ( 1f )} = σ(f), then the claim of Theorem 2.1

fails. Indeed, let f = ez + 1 and n = 1, it is easy to see that (λ+ µ)f − (λ+ µ) has
no zeros, where λ+ µ ̸= 0.

If we delate the assumption that max{λ(f), λ( 1f )} < σ(f) in Theorem 2.1, then
we get the following result.

Theorem 2.2. Let f be a transcendental meromorphic function with finite order, c
be a non-zero constant, n and m be no-negative integers, and let λ, µ be two complex
numbers such that λf(z + c)m + µf(z)m ̸= 0. If n ≥ 4m + 5, then f(z)n(λf(z +
c)m + µf(z)m) assumes every non-zero value a ∈ C infinitely often.

The reasoning used in proving Theorem C, yields the following result, however,
the proof is different in details.

Theorem 2.3. Let f be a transcendental meromorphic function with finite order
σ(f), µ and c be non-zero constants, and let a(z) be a non-zero small function to
f . Suppose that n, m are positive integers such that n > m + 1 (or m > n + 1)
and the exponent of convergence of the poles of f satisfies λ( 1f ) < σ(f). Then the

difference polynomial f(z)n + µf(z + c)m − a(z) has infinitely many zeros.

In case of delating the assumption that λ( 1f ) < σ(f) in Theorem 2.3, we get:

Theorem 2.4. Let f be a transcendental meromorphic function with finite order, µ
and c be non-zero constants, and let a(z) be a non-zero small function to f . Suppose
that n, m are positive integers such that n ≥ 2m + 5 (or m ≥ 2n + 5). Then the
difference polynomial f(z)n + µf(z + c)m − a(z) has infinitely many zeros.

Remark 2. Using the same way of Theorem 2.4, we know if a(z) = 0 in Theorem
2.4 and n ≥ m+ 6 (or m ≥ n+ 6), then Theorem 2.4 holds as well.

Lemma 2.5([3, Theorem 2.1]). Let f be a meromorphic function with finite order,
and let c ∈ C and δ ∈ (0, 1). Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o

(
T (r, f)

rδ

)
= S(r, f).

Remark 3. Lemma 2.5 is a difference analogue of the logarithmic derivative lemma,
given by Halburd-Korhonen [3]. Chiang and Feng have obtained similar estimates
for the logarithmic difference[2, Corollary 2.5], and this work is independent from
[3]. The following lemma is essentially in our proof, due to Heittokangas et al, see
[5, Theorems 6 & 7].
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Lemma 2.6 Let f be a non-constant meromorphic function with finite order, c ∈ C.
Then

N(r,
1

f(z + c)
) ≤ N(r,

1

f
) + S(r, f), N(r, f(z + c)) ≤ N(r, f) + S(r, f),

outside of a possible exceptional set E with finite logarithmic measure.

Remark 4. From Lemma 2.5 and Lemma 2.6, we know that T (r, f(z + c)) =
T (r, f) + S(r, f) for a meromorphic function of finite order.

Lemma 2.7([2, Theorem 2.1]). Let f be a non-constant meromorphic function with
finite order σ(f), and let c be a non-zero constant. Then, for each ε > 0, we have

T (r, f(z + c)) = T (r, f(z)) +O(rσ(f)−1+ε) +O(log r).

Lemma 2.8([12, Theorem 1.17 and 1.18]). Let f and g be two non-constant mero-
morphic functions in the complex plane with σ(f) as the order of f and µ(g) as the
lower order of g. If σ(f) < µ(g), then

µ(fg) = µ(g),

and
T (r, f) = o(T (r, g)), (r → ∞).

Proof of Theorem 2.1 Set F (z) = f(z)n(λf(z + c)m + µf(z)m). By Remark 4, it
follows that

T (r, F ) ≤ T (r, f(z)n) + T (r, f(z)m) + T (r, f(z + c)m) + S(r, f)

≤ (n+ 2m)T (r, f) + S(r, f).

Thus, we get S(r, F ) = o(T (r, f)) = S(r, f). As the poles of f(z)n(λf(z + c)m +
µf(z)m) come from the poles of f(z) and f(z + c), we get

N(r, f(z)n(λf(z + c)m + µf(z)m))

≤ N(r, fn) +N(r, fm) +N(r, f(z + c)m) + S(r, f)

≤ (n+ 2m)N(r, f) + S(r, f),

by Lemma 2.6. From above inequality, we know λ( 1
F ) ≤ λ( 1f ) < σ(f). In addition,

from Lemma 2.5 and Lemma 2.7, we have

(n+m)T (r, f) = T (r,
1

fn+m
) + S(r, f)

= m(r,
1

fn+m
) +O(rλ(f)+ε) + S(r, f)

≤ m(r,
F

fn+m
) +m(r,

1

F
) +O(rλ(f)+ε) + S(r, f)

≤ T (r, F ) +O(rλ(f)+ε) + S(r, f).

(2.1)
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The second main theorem yields

T (r, F ) ≤ N(r, F ) +N(r,
1

F
) +N(r,

1

F − a
) + S(r, F )

≤ N(r,
1

F − a
) +N(r,

1

λf(z + c)m + µf(z)m
)

+O(rλ(f)+ε) +O(rλ(
1
f )+ε) + S(r, f)

≤ N(r,
1

F − a
) + 2mT (r, f)

+O(rλ(f)+ε) +O(rλ(
1
f )+ε) +O(rσ(f)−1+ε) + S(r, f).

(2.2)

Combining (2.1) and (2.2), we have

(n−m)T (r, f) ≤ N(r,
1

F − a
) +O(rλ(

1
f )+ε) +O(rλ(f)+ε) +O(rσ(f)−1+ε) + S(r, f),

which is a contradiction to the fact that f is with order σ(f), if F − a has finitely
many zeros. The conclusion follows. 2

Proof of Theorem 2.2. Set F (z) = fn(λf(z + c)m + µf(z)m) − a(z), then from
Remark 4, we know

nT (r, f) = T (r, fn) = T (r,
F + a

λf(z + c)m + µf(z)m
) + S(r, f)

≤ T (r, F ) + T (r, fm) + T (r, f(z + c)m) + S(r, f)

= T (r, F ) + 2mT (r, f) + S(r, f).

That is

(2.3) T (r, F ) ≥ (n− 2m)T (r, f) + S(r, f).

As we know, the poles of λf(z+c)m+µf(z)m come from the poles f(z) and f(z+c),
therefore

(2.4) N(r, λf(z + c)m + µf(z)m) ≤ N(r, f) +N(r, f(z + c)) + S(r, f).
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By the second main theorem and (2.3), (2.4), we get

(n− 2m)T (r, f) ≤ T (r, F ) + S(r, f)

≤ N(r,
1

F
) +N(r,

1

F + a
) +N(r, F ) + S(r, F )

≤ N(r,
1

f
) +N(

1

λf(z + c)m + µf(z)m
) +N(r, f)

+N(r, λf(z + c)m + µf(z)m) +N(r,
1

F
) + S(r, F )

≤ 2T (r, f) + T (r, λf(z + c)m + µf(z)m) +N(r, f)

+N(r, f(z + c)) +N(r,
1

F
) + S(r, F )

≤ (2m+ 4)T (r, f) +N(r,
1

F
) + S(r, f)

Hence, the assumption that n ≥ 4m+ 5 implies that F have infinitely many zeros,
completing the proof. 2

Proof of Theorem 2.3. Let F (z) = fn + µf(z + c)m − a, then using the same way
above, we know that

|n−m|T (r, f) + S(r, f) ≤ T (r, F ) ≤ (m+ n)T (r, f) + S(r, f).

From the assumption that m ̸= n, we know

(2.5) σ(F ) = σ(f), µ(F ) = µ(f),

where µ(f) is the lower order of f . Assume that F (z) admits finitely many zeros
only. From the Hadamard factorization theorem, there exist p(z), q(z) and A(z),
where p(z) and q(z) are polynomials and A(z) is the canonical product formed with
the poles of F (z), so that

(2.6) f(z)n + µf(z + c)m − a(z) =
q(z)

A(z)
ep(z) = H(z)ep(z).

By (2.6), we get σ(H) ≤ max{σ(q), σ(A)}. If σ(A) ≤ σ(q), then we get σ(H) =
σ(q). As q(z) is a polynomial, we know T (r,H) = S(r, f). Furthermore, by (2.5)
and (2.6), we conclude that p(z) is a non-constant polynomial. Hence, T (r,H) =
S(r, ep(z)).

It remains to consider the case σ(A) > σ(q). From the assumption λ( 1f ) < σ(f),

we get σ(H) = σ(A) = λ(A) = λ( 1f ) < σ(f). Moreover, we know from (2.6)

(2.7) σ(F ) = σ(ep(z)) = µ(ep(z)) = σ(f) > σ(H).

From Lemma 2.8 and (2.5), (2.7), we obtain that

µ(f) = µ(F ) = µ(ep(z)) > σ(H).
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From above equation and Lemma 2.8, we get T (r,H) = S(r, f) and T (r,H) =
S(r, ep(z)). The assertion now follows by case as Theorem 3 in [9, p. 184-185], we
have

T

(
r, nf ′(z)− (p′(z) +

H ′(z)

H(z)
)f

)
= S(r, f)

and

T

(
r, f(nf ′(z)− (p′(z) +

H ′(z)

H(z)
)f)

)
= S(r, f).

Hence
T (r, f) = S(r, f),

which is a contradiction, the conclusion holds. 2

Proof of Theorem 2.4. Case 1. n ≥ 2m+ 5. Suppose

(2.8) ϕ(z) =
µf(z + c)m − a(z)

fn(z)
,

then from Remark 4, we get

T (r, fn) = T (r,
1

fn
) +O(1) = T (r, ϕ

1

µf(z + c)m − a(z)
) +O(1)

≤ T (r, ϕ) + T (r, f(z + c)m) + S(r, f)

≤ T (r, ϕ) +mT (r, f) + S(r, f).

From above equation, we get that

(2.9) T (r, ϕ) ≥ (n−m)T (r, f) + S(r, f).

Concerning to the zeros and poles of ϕ, we obtain that

N(r, ϕ) ≤ N(r, f(z + c)) +N(r,
1

f
) + S(r, f)

≤ 2T (r, f) + S(r, f).

(2.10)

And

N(r,
1

ϕ
) ≤ N(r, f) +N(r,

1

f(z + c)m − a
µ

) + S(r, f)

≤ T (r, f) +mT (r, f) + S(r, f) ≤ (m+ 1)T (r, f) + S(r, f).

(2.11)

Using the second main theorem, (2.9)–(2.11), we have

(n−m)T (r, f) ≤ T (r, ϕ) + S(r, f)

≤ N(r, ϕ) +N(r,
1

ϕ
) +N(r,

1

ϕ+ 1
) + S(r, f)

≤ (3 +m)T (r, f) +N(r,
1

ϕ+ 1
) + S(r, f).
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Observing ϕ(z), we get 1-points of ϕ(z) come from the poles of f(z) and zeros of
f(z)n + µf(z + c)m − a(z). By above equation, we conclude that

(n−m)T (r, f) ≤ (3+m)T (r, f)+N(r, f)+N(r,
1

f(z)n + µf(z + c)m − a(z)
)+S(r, f),

which implies that f(z)n + µf(z + c)m − a(z) has infinitely many zeros by the
assumption that n ≥ 2m+ 5.

Case 2. m ≥ 2n+5. Set φ(z) = f(z+c), and φ(z−c) = f(z) follows. Therefore,
we consider the value distribution problem of φ(z)m+ 1

µφ(z− c)n− a
µ . Similarly as

in Case 1, we get the conclusion, completing the proof of Theorem 2.4. 2

3. Value Sharing Problem of f(z)n(f(z)− 1)f(z + c)

As a difference analogue of the value distribution of differential polynomial fn(f −
1)f ′, Zhang [13] considered the value distribution of fn(f − 1)f(z + c). Further-
more, Zhang and one of the present authors gave the following uniqueness theorem
at almost the same time, however, our proofs are different.

Theorem D([10, 13]). Let f and g be transcendental entire functions with fi-
nite order, let c be a non-zero complex constant, and let n ≥ 7 be an integer. If
f(z)n(f(z)−1)f(z+c) and g(z)n(g(z)−1)g(z+c) share a CM, where a is non-zero
small function to f and g, then f(z) ≡ g(z).

Now it is natural to ask what happens if the CM sharing value can be replaced
by the IM sharing value in Theorem D? In this paper, we give a positive answer to
the above question by proving the following result.

Theorem 3.1. Let f and g be transcendental entire functions with finite order, let
c be a non-zero complex constant, and let n ≥ 16 be an integer. If f(z)n(f(z) −
1)f(z+c) and g(z)n(g(z)−1)g(z+c) share a IM, where a is non-zero small function
to f and g, then f(z) ≡ g(z).

Lemma 3.2([11, Lemma 2.3]). Let

(3.1) H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
G′′

G′ − 2G′

G− 1

)
,

where F and G are two non-constant meromorphic functions. If F and G share 1
IM and H ̸≡ 0, then

T (r, F ) + T (r,G) ≤ 2

(
N2(r,

1

F
) +N2(r,

1

G
) +N2(r, F ) +N2(r,G)

)
+ 3

(
N(r, F ) +N(r,G) +N(r,

1

F
) +N(r,

1

G
)

)
+ S(r, F ) + S(r,G).

(3.2)
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Proof of Theorem 3.1. Let F (z) = f(z)n(f−1)f(z+c)
a(z) and G(z) = g(z)n(g−1)g(z+c)

a(z) ,

then we get

(n+ 2)T (r, f) = T (r, fn+1(f − 1)) = m(r, fn+1(f − 1))

≤ m(r,
fn+1(f − 1)

aF
) +m(r, aF ) + S(r, f)

≤ T (r, F ) +m(r,
fn+1(f − 1)

aF
) + S(r, f).

Using above equation and Lemma 2.5, we obtain that

(3.3) T (r, F ) ≥ (n+ 2)T (r, f) + S(r, f).

Similarly, we have

(3.4) T (r,G) ≥ (n+ 2)T (r, g) + S(r, g).

In addition, from Remark 4, we see

T (r, F ) ≤ (n+ 2)T (r, f) + S(r, f),

and
T (r,G) ≤ (n+ 2)T (r, g) + S(r, g).

Then we get

(3.5) T (r, F ) = (n+ 2)T (r, f) + S(r, f),

and

(3.6) T (r,G) = (n+ 2)T (r, g) + S(r, g).

Using the second main theorem, we get

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

F − 1
) + S(r, F )

≤ N(r,
1

f
) +N(r,

1

f − 1
) +N(r,

1

f(z + c)
) +N(r,

1

G− 1
) + S(r, f)

≤ 3T (r, f) + (n+ 2)T (r, g) + S(r, f) + S(r, g)

Combining (3.3) with above equation, we have

(3.7) (n− 1)T (r, f) ≤ (n+ 2)T (r, g) + S(r, f) + S(r, g).

Similarly, we get

(3.8) (n− 1)T (r, g) ≤ (n+ 2)T (r, f) + S(r, f) + S(r, g).
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Hence, S(r, f) = S(r, g). The following, we will evaluate the counting functions of
F and G.

N2(r,
1

F
) ≤ 2N(r,

1

f
) +N(r,

1

f − 1
) +N(r,

1

f(z + c)
) + S(r, f)

≤ 4T (r, f) + S(r, f).

(3.9)

And

N(r,
1

F
) ≤ N(r,

1

f
) +N(r,

1

f − 1
) +N(r,

1

f(z + c)
) + S(r, f)

≤ 3T (r, f) + S(r, f).

(3.10)

By the same reasoning, we obtain

(3.11) N2(r,
1

G
) ≤ 4T (r, g) + S(r, g),

and

(3.12) N(r,
1

G
) ≤ 3T (r, g) + S(r, g).

From the condition of the Theorem 3.1, we know F and G share 1 IM. Let H be
given by (3.1). If H ̸≡ 0, by Lemma 3.2, we know that (3.2) holds. From (3.5),
(3.6) and (3.9)–(3.12), we get

(n+ 2)(T (r, f) + T (r, g)) ≤ T (r, F ) + T (r,G)

≤ 17(T (r, f) + T (r, g)) + S(r, f) + S(r, g),

(3.13)

which contradicts the assumption that n ≥ 16. Therefore H ≡ 0. Integrating twice,
we get from (3.1) that

(3.14)
1

F − 1
=

A

G− 1
+B,

where A( ̸= 0) and B are constants. From (3.14), we have

(3.15) F =
(B + 1)G+ (A−B − 1)

BG+ (A−B)
, G =

(B −A)F + (A−B − 1)

BF − (B + 1)
.

We consider the following three cases.

Case 1. Suppose that B ̸= 0,−1. From (3.15) we have N(r, 1
F−B+1

B

) = N(r,G).

From the second fundamental theorem, we have

T (r, F ) ≤ N(r,
1

F
) +N(r,

1

F − B+1
B

) + S(r, F )
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(3.16) = N(r,
1

F
) +N(r,G) + S(r, F ) ≤ N(r,

1

F
) + S(r, F ).

By (3.3), (3.10) and (3.16), we get that

(n+ 2)T (r, f) ≤ 3T (r, f) + S(r, f),

which contradicts n ≥ 16.

Case 2. Suppose that B = 0. From (3.15) we have

(3.17) F =
G+ (A− 1)

A
, G = AF − (A− 1).

If A ̸= 1, we get from (3.17) that

(3.18) N(r,
1

F
) = N(r,

1

G+ (A− 1)
)

Combining the second main theorem with (3.4), (3.7), (3.12) and (3.17), we have

(n+ 2)T (r, g) + S(r, g) ≤ T (r,G)

≤ N(r,
1

G
) +N(r,

1

G+ (A− 1)
) + S(r,G)

≤ 3T (r, g) +N(r,
1

F
) + S(r, g)

≤ (3 +
3(n+ 2)

n− 1
)T (r, g) + S(r, g),

which implies n2 − 5n+5 ≤ 0, which contradicts n ≥ 16. Thus A = 1 and F = G.

Case 3. Suppose that B = −1. From (3.15), we obtain

(3.19) F =
A

−G+ (A+ 1)
, G =

(A+ 1)F −A

F
.

IfA ̸= −1, then from (3.19), N(r, 1
F− A

A+1

) = N(r, 1
G ) follows. By the same reasoning

mentioned in Case 1 and Case 2, we get a contradiction. Hence A = −1. From
(3.15), we have FG = 1.

From F = G or FG = 1, we get f(z)n(f(z)−1)f(z+c)g(z)n(g(z)−1)g(z+c) ≡
a(z)2 or fn(f − 1)f(z + c) ≡ gn(g − 1)g(z + c). The assertion now follows by Case
1 and Case 2 as in [13, p. 407], the conclusion holds. 2
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