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Abstract. The noncommutative Singer-Wermer conjecture states that every derivation

on a Banach algebra (possibly noncommutative) leaves primitive ideals of the algebra

invariant. This conjecture is still an open question for more than thirty years. In this

note, we approach this question via some sufficient conditions for the separating ideal of

ϕ-derivations to be nilpotent. Moreover, we show that the spectral boundedness of ϕ-

derivations implies that they leave each primitive ideal of Banach algebras invariant.

1. Introduction

By a ϕ-derivation on an algebra A, we mean a linear mapping ∆ : A → A
satisfying the identity ∆(ab) = ∆(a)ϕ(b) + a∆(b) for all a, b ∈ A, where ϕ is an
automorphism of A. Of course, 1A-derivations (where 1A is the identity mapping
on A) are ordinary derivations. For example, for any automorphism ϕ, ϕ− 1A is a
ϕ-derivation, and for each fixed c ∈ A, the mapping ∆ : x 7→ cϕ(x)− cx (x ∈ A), is
a ϕ-derivation. For any derivation D of a unital algebra A and an invertible element
c ∈ A, the mapping ∆ : x 7→ D(x)c is a ϕc-derivation, where ϕc : x 7→ c−1xc is an
inner automorphism. Hence, the notion of a ϕ-derivation can be considered as a
generalization and unification of both the notions of a derivation and an automor-
phism.

In 1955 Singer and Wermer [11] proved that the range of continuous derivation
on a commutative Banach algebra is contained in the Jacobson radical. In the same
paper they conjectured that the assumption of continuity is superfluous. In 1969
Johnson [6] proved that the Singer-Wermer conjecture is true when the algebra
is semisimple. In 1988 the Singer-Wermer conjecture for a commutative Banach
algebra was finally conformed by Thomas [12].

Now the problem concerning derivations on Banach algebras belongs to the
noncommutative setting which states that a (possibly discontinuous) derivation
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D on a (possibly noncommutative) Banach algebra A such that the commutator
D(a)a− aD(a) belongs to the Jacobson radical of A for all a ∈ A, maps A into its
Jacobson radical. Equivalently, every derivation on A leaves primitive ideals of A
invariant, which is called the noncommutative Singer-Wermer conjecture. But the
question whether this is true, is still an open problem. In 1969 Sinclair [9] proved
the noncommutative Singer-Wermer conjecture in case the derivation is continuous.
There are various partial answers of the noncommutative Singer-Wermer conjecture
and these results has been accomplished by a number of authors (for example, see
[2, 7]).

The purpose of this note is to present the noncommutative Singer-Wermer con-
jecture with some conditions via ϕ-derivations.

Throughout, A will represent an algebra over a complex field C. The Jacobson
radical (resp. the prime radical) of A will be denoted by rad(A) (resp. prad(A)).
Note that rad(A) (resp. prad(A)) is the intersection of all primitive ideals (resp.
all prime ideals) of A. A is said to be semisimple (resp. semiprime) if rad(A) = {0}
(resp. prad(A) = {0}). We write [a, b] for the commutator ab − ba. N will denote
the set of all natural numbers, and πI will denote the canonical quotient mapping
from A onto A/I, where I is any closed two-sided ideal of A.

Without loss of generality we assume A to be unital. In fact, any Banach algebra
A without a unity can be embedded into a unital Banach algebra A′ = A ⊕ C
as an ideal of codimension one. In particular, we can identify A with the ideal
{(a, 0) : a ∈ A} in A′ by the isometric isomorphism a → (a, 0).

2. Nilpotency of the Separating Ideal of ϕ-derivations and ∆-invariant
Primitive Ideals

Let A be a Banach algebra and ∆ a ϕ-derivation on A. Then the separating
space of ∆ is defined as

S(∆) =
{
a ∈ A : there exists a sequence {an} → 0 in A with ∆(an) → a

}
,

which is a closed subspace of of A and ∆ is continuous if and only if S(∆) = {0}
(see [10]). It was shown in [5, p. 1183] that S(∆) is a separating ideal of A, i.e., a
separating ideal J of A is a closed two-sided ideal of A with the property that, for
each sequence {an} in A, there exists N ∈ N such that Jan . . . a1 = JaN . . . a1 for
all n ≥ N .

The next two lemmas are due to Hejazian and Janfada [5].

Lemma 2.1. Let A be a Banach algebra, let ϕ be a continuous automorphism of
A and let ∆ be a ϕ-derivation on A. Suppose that ϕ and [∆, ϕ] leave each nilpotent
and each primitive ideal of A invariant. If S(∆) is nilpotent, then ∆ leaves each
primitive ideal of A invariant.

Lemma 2.2. Let A be a Banach algebra, let ϕ be a continuous automorphism of
A and let ∆ be a ϕ-derivation on A with [∆, ϕ] = 0. If S(∆) ∩ rad(A) is nil, then
S(∆) is nilpotent.
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We are ready to investigate our main results.

Theorem 2.3. Let A be a Banach algebra, let ϕ be an automorphism of A and let
∆ be a ϕ-derivation on A. Then S(∆) is nilpotent if and only if

∩
n≥1[S(∆)]n is a

nil ideal.

Proof. One implication is obvious. Suppose that
∩

n≥1[S(∆)]n is a nil ideal and S(∆)
is not nilpotent. By [4, Theorem 2.5], there exist closed prime ideals P1, P2, · · · , Pk

of A that do not contain S(∆) such that

S(∆) ∩ prad(A) = S(∆) ∩ P1 ∩ P2 ∩ · · · ∩ Pk.

Since each Pi is closed, we see that S(∆)∩prad(A) is closed. Let a be an element of
S(∆) which is not nilpotent. Since S(∆) is a separating ideal of A, it follows from

the Mittag-Leffler theorem that
∩

n≥1 S(∆)an is dense in S(∆)aN for some N ∈ N.
It is clear S(∆)an ⊆ S(∆)an+1 for all n ∈ N. Therefore we have∩

n≥1

S(∆)an ⊆
∩
n≥1

[S(∆)]n ⊆ S(∆) ∩ prad(A).

Since
∩

n≥1 S(∆)an is dense in S(∆)aN and S(∆) ∩ prad(A) is closed, we get

S(∆)aN ⊆ S(∆) ∩ prad(A). This implies that S(∆)aN ⊆ Pi for i = 1, 2, · · · , k.
But each Pi is a prime ideal, hence a ∈ Pi for i = 1, 2, · · · , k. Thus we obtain
a ∈ S(∆) ∩ prad(A) which tells us that a is nilpotent. This is a contradiction and
we have the result. 2

Theorem 2.4. Let A be a Banach algebra, let ϕ be a continuous automorphism of
A and let ∆ be a ϕ-derivation on A. Suppose that ϕ leaves each nilpotent and each
primitive ideal of A invariant and [∆, ϕ] = 0. If the Jacobson radical rad(A) of A
is finite dimensional, then ∆ leaves each primitive ideal of A invariant.

Proof. Let a ∈ S(∆)∩rad(A). Then there exists a sequence {an} in A with {an} → 0
such that ∆(an) → a. Then aan → 0 in rad(A) and ∆(aan) = ∆(a)ϕ(an)+a∆(an).
Thus we have ∆(aan) → a2. Since ∆ is continuous on rad(A), we get a2 = 0. This
implies that S(∆) ∩ rad(A) is nilpotent and so S(∆) is nilpotent by Lemma 2.2.
Now Lemma 2.1 gives the conclusion. 2

Remark 2.5([8]). Let l2 =
{
a = {λn} :

∑∞
n=1 |λn|2 < ∞

}
Then l2 is a Banach

space with norm ∥a∥ = (
∑∞

n=1 |λn|2)
1
2 < ∞. It is well-known that l2 is a Banach

algebra under the pointwise multiplication. Let l20 be the dense subalgebra of l2 con-
sisting of elements which vanish outside a finite set. Let A0 = l20 ⊕ C be the linear
space direct sum. Define a multiplication and a norm in A0 by (a, α)(b, β) = (ab, 0)
and ∥(a, α)∥ = max(∥a∥, |α −

∑∞
n=1 λn|). Let A be the completion of A0 with re-

spect to this norm. Then the Jacobson radical rad(A) of the Banach algebra A is
one-dimensional since rad(A) = {0} ⊕ C.

Theorem 2.6. Let A be a Banach algebra, let ϕ be an inner automorphism of A
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and let ∆ be a ϕ-derivation on A. Suppose that [∆, ϕ] leave each nilpotent and each
primitive ideal of A invariant. If S(∆) is finite dimensional and semisimple, then
∆ leaves each primitive ideal of A invariant.

Proof. It is sufficient to show that S(∆) is nilpotent. Suppose on the contrary that
S(∆) is not nilpotent, that is, S(∆)n ̸= {0} for all n ∈ N. Since S(∆) is finite
dimensional and semisimple, it follows from the Wedderburn theorem that S(∆)
has an identity e which is a central idempotent in A. Then we have

∆(e) = ∆(e2) = ∆(e)ϕ(e) + e∆(e) = ∆(e)e+ e∆(e) = 2e∆(e)

which yields that e∆(e) = 2e2∆(e) = 2e∆(e). Hence e∆(e) = 0 and ∆(e) =
2e∆(e) = 0. On the other hand, for all a ∈ A

∆(ea) = ∆(e)ϕ(a) + e∆(a) = e∆(a) ∈ eA;

∆(a− ea) = ∆(a)−∆(e)ϕ(a)− e∆(a) = (1− e)∆(a) ∈ (1− e)A.

Since eA is contained in S(∆), eA is finite dimensional. Then the derivation ∆
induces a derivation ∆̄ on the Banach algebra A/(1 − e)A, defined by ∆̄(a + (1 −
e)A) = ∆(a) + (1 − e)A for all a ∈ A. Since A = eA ⊕ (1 − e)A, ∆̄ is continuous
on A/(1 − e)A. This means that S(∆) ⊆ (1 − e)A by [10, Lemma 1.4]. Thus we
get e ∈ S(∆) ⊆ (1 − e)A but e /∈ (1 − e)A. This is a contradiction. Hence S(∆) is
nilpotent and Lemma 2.1 completes the proof. 2

Lemma 2.7. Let A be a Banach algebra, let ϕ be a continuous automorphism of
A and let ∆ be a ϕ-derivation on A with [∆, ϕ] = 0. If

∩
n≥1[rad(A)]

n = {0}, then
S(∆) is nilpotent.

Proof. Let a ∈ S(∆)∩rad(A). Since S(∆) is a separating ideal, there is N ∈ N such

that S(∆)aN = S(∆)an for all n ≥ N . Hence we have

S(∆)aN =
∩

n≥N

S(∆)an =
∩
n≥1

S(∆)an.

Applying Mittag-Leffler theorem, we obtain

S(∆)aN =
∩
n≥1

S(∆)an =
∩
n≥1

S(∆)an ⊆
∩
n≥1

[rad(A)]n = {0}.

Thus we get aN+1 = 0 which implies that S(∆)∩ rad(A) is nilpotent and so is S(∆)
by Lemma 2.2. 2

Lemma 2.8. Let A be an algebra and let P be a prime ideal of A. If ϕ is an
inner automorphism of A and ∆ is a ϕ-derivation on A with [∆, ϕ] = 0, then
Q = {a ∈ P : ∆n(a) ∈ P for all n ∈ N} is a prime ideal of A.

Proof. For convenience, take ∆0(a) = a (a ∈ A). From ([3, Theorem 2.1]), we know
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that, for any nonnegative integer n,

(2.1) ∆n(ab) =
n∑

i=0

(
n

i

)
∆n−i(a)ϕn−i(∆i(b)).

It is clear that Q is an ideal of A. We show that Q is prime as follows. Consider any
a, b ∈ A−Q. Choose nonnegative integers r and s as small as possible so that ∆r(a)
and ∆s(b) are not in P , and then choose c ∈ A such that ∆r(a)ϕr(c)ϕr(∆s(b)) /∈ P .
Now use the relation (2.1) to expand ∆r+s(acb), as follows:

∆r+s(acb) =
r+s∑
i=0

(
r + s

i

)
∆r+s−i(a)ϕr+s−i(∆i(cb))(2.2)

=
r+s∑
i=0

i∑
j=0

(
r + s

i

)(
i

j

)
∆r+s−i(a)ϕr+s−i(∆i−j(c))ϕr+s−j(∆j(b)).

Since we have ∆r+s−i(a) ∈ P if i > s and ∆j(b) ∈ P if j < s, all of the terms in
the last summation of (2.2) are in P except for

(
r+s
s

)(
s
s

)
∆r(a)ϕr(c)ϕr(∆s(b)), which

is not in P since ∆r(a)ϕr(c)ϕr(∆s(b)) is not in P . Hence ∆r+s(acb) /∈ P and so
acb /∈ Q, which shows that Q is prime. 2

Theorem 2.9. Let A be a Banach algebra. Suppose that ϕ is an inner automor-
phism of A and ∆ is a ϕ-derivation on A with [∆, ϕ] = 0. Then, for each primitive
ideal P of A, ∆ leaves P invariant if and only if J = {a ∈ P : ∆n(a) ∈ P for all n ∈
N} is closed in A.

Proof. If ∆(P ) ⊆ P , then J = P is closed.
Assume that J is closed. According to Lemma 2.8, it follows that J is a prime

ideal of A because any primitive ideal is prime. Since we have ϕ(J) ⊆ J and
∆(J) ⊆ J , ϕ drops to an automorphism ϕ̄ of the prime Banach algebra A/J and
so ∆ induces the ϕ̄-derivation ∆̄ on A/J defined by ∆̄(x + J) = ∆(x) + J for all
x ∈ A, respectively. Also the hypothesis [∆, ϕ] = 0 on A induces [∆̄, ϕ̄] = 0 on A/J .
Since J ⊆ P , we see that J ⊆ rad(A) and

(2.3) rad(A/J) = rad(A)/J ⊆ P/J.

Now we show that ∩
n≥1

(P/J)n = {0}.

Let x ∈
∩

n≥1(P/J)
n. Then for each n ∈ N, there exist elements an ∈ Pn such that

x = an + J . Since a1 − an+1 ∈ J for all n ∈ N, we have ∆n(a1 − an+1) ∈ P .
On the other hand, we have ∆n(an+1) ∈ P so we see that ∆n(a1) ∈ P . Since n

is arbitrary, then we obtain a1 ∈ J and x = 0. But x is arbitrary, hence we get∩
n≥1

(P/J)n = {0}.
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Then the relation (2.3) gives ∩
n≥1

[rad(A/J)]n = {0}

and so S(∆̄) is nilpotent by Lemma 2.7.
Since A/J is prime and so has no non-zero nilpotent ideal, we obtain S(∆̄) =

{0}, that is, ∆̄ is continuous on A/J . This means that we also define a mapping

Φ ◦ ∆̄n ◦ πJ : A → A/J → A/J → A/P

by (Φ ◦ ∆̄n ◦πJ)(x) = (πJ ◦∆n)(x) for all x ∈ A, where Φ is the canonical inclusion
mapping from A/J onto A/P (which exists since J ⊆ P ). We therefore conclude
that ∥πP ◦∆n∥ ≤ ∥∆̄∥n for all n ∈ N, since the other mappings are norm depressing.
Now, taking into account [13, Lemma 1.1], we can proceed analogously to the proof
of [3, Theorem 3.2] to obtain that πP (∆(P )) consists of quasinipotent elements,

that is, elements x such that limn→∞ ∥xn∥ 1
n = 0. As in the proof of [3, Corollary

3.3], this gives ∆(P ) ⊆ P . 2

Corollary 2.10. Let A be a Banach algebra. Suppose that ϕ is an inner automor-
phism of A and that ∆ is a ϕ-derivation on A with [∆, ϕ] = 0. If every prime ideal
of A is closed, then ∆ leaves each primitive ideal of A invariant.

Proof. Take J = {a ∈ P : ∆n(a) ∈ P for all n ∈ N}, where P is a primitive ideal of
A. Since J is a prime ideal of A, it follows that J is closed. By Theorem 2.9, we
have the result. 2

Remark 2.11([8]). Let A =
{
a =

∑∞
n=0 anx

n : ∥a∥ =
∑∞

n=0 |an|wn < ∞
}

in
one indeterminant x with complex coefficients where {wn : n = 0, 1, 2, · · · } is a

sequence in (0,∞) such that w0 = 1, wn+m ≤ wnwm and limn→∞(wn)
1
n = 0. Then

A is a Banach algebra of power series. Furthermore, A has a unique maximal ideal
M =

{∑∞
n=0 anx

n : a0 = 0
}
. If {wn} is chosen properly, then the only prime ideals

of A are {0} and A. Hence every prime ideal of A is closed.

The following is the Sinclair’s version [9] of ϕ-derivations.

Corollary 2.12. Let A be a Banach algebra. Suppose that ϕ is an inner automor-
phism of A and ∆ is a ϕ-derivation on A with [∆, ϕ] = 0. If ∆ is continuous on A,
then ∆ leaves each primitive ideal of A invariant.

Proof. Let P be a primitive ideal of A. Since ∆ is continuous, it is easy to see that
J = {a ∈ P : ∆n(a) ∈ P for all n ∈ N} is closed. Hence Theorem 2.9 gives the
conclusion. 2

Theorem 2.13. Let A be a Banach algebra in which every closed prime ideal has
a finite codimension. If ϕ is an inner automorphism of A and ∆ is a ϕ-derivation
on A with [∆, ϕ] = 0, then ∆ leaves each primitive ideal of A invariant.

Proof. We claim that S(∆) is nilpotent. Suppose that S(∆) is not nilpotent. Then
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it follows from [4, Theorem 2.5] that there exists a minimal prime ideal P such
that P is closed and S(∆) ̸⊆ P . By Lemma 2.6, we see that Q ⊆ P and we also
obtain P ⊆ Q by the minimality of P , therefore we have P = Q, i.e., ∆(P ) ⊆ P .
Since ϕ induces an inner automorphism ϕ̄ of A/P , we can define a ϕ̄-derivation
∆̄ : A/P → A/P by ∆̄(a+P ) = ∆(a)+P for all a ∈ A. By the hypothesis, we have
dim(A/P ) < ∞ and so ∆̄ is continuous on A/P . Hence [10, Lemma 1.4] yields that
S(∆) ⊆ P . This is a contradiction and we have the result on account of Lemma
2.1. 2

Remark 2.14([8]). A = Cn[0, 1] is a Banach algebra of n times continuously
differential complex valued functions defined on the unit interval [0, 1] with the
norm

∥f∥n = max
t∈[0,1]

n∑
k=0

|f (k)(t)|
k!

for f ∈ Cn[0, 1]. Then every closed prime ideal of A has a finite codimension because
the only closed prime ideals are the maximal ideals.

3. Spectral Boundedeness of ϕ-derivations and ∆-invariant Primitive
Ideals

Let A and B be Banach algebras. A linear mapping T : A → B is called spectrally
bounded if there is M > 0 such that r(T (a)) ≤ Mr(a) for all a ∈ A. If r(T (a)) =
r(a) for all a ∈ A, we say that T is a spectrally isometry. If r(a) = 0, then a is

called quasinilpotent. (Herein, r(a) = limn→∞ ∥an∥ 1
n denotes the spectral radius of

the element a).

Observe that the canonical epimorphism σ := πrad(A) : A → A/rad(A) is
spectrally isometry.

Brešar and Mathieu [2, Lemma 2.1] showed that if δ is a derivation on a unital
Banach algebra A, then the spectral boundedness of δ implies that δ leaves each
primitive ideal of A invariant.

We now have the following results concerning ϕ-derivations by modifying the
above Brešar and Mathieu’s result from derivations.

Theorem 3.1. Let A be a Banach algebra, let ϕ be an inner automorphism of A
and let ∆ be a ϕ-derivation on A. If ∆ is spectrally bounded, then ∆ leaves each
primitive ideal of A invariant.

Proof. Suppose that r(∆(a)) ≤ Mr(a) for some M > 0 and all a ∈ A. Then we see
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that

r(a∆(b)) = r(∆(ab)−∆(a)ϕ(b))

= r(σ(∆(ab)−∆(a)ϕ(b)))

= r(σ(∆(ab))− σ(∆(a)ϕ(b)))

= r(σ(∆(ab)))

= r(∆(ab)) ≤ Mr(ab) = 0

for all b ∈ rad(A) and all a ∈ A. Hence we have ∆(rad(A)) ⊆ rad(A) by [1, p.126,
Prop. 1(ii)]. Since ϕ induces an inner automorphism ϕ̄ of A/rad(A), we can define
a ϕ̄-derivation ∆̄ : A/rad(A) → A/rad(A) by ∆̄(a + rad(A)) = ∆(a) + rad(A) for
all a ∈ A, i.e., ∆̄ is a ϕ̄-derivation on the semisimple Banach algebra A/rad(A),
and hence is continuous by [3, Corollary 4.3]. It follows from [9] that d̄ leaves
each primitive ideal P̄ of A/rad(A) invariant. If P is a primitive ideal of A, then
P̄ = P/rad(A) is a primitive ideal of A/rad(A) whence d̄(P̄ ) ⊆ P̄ implies that
d(P ) ⊆ P . Thus we conclude that d leaves each primitive ideal of A invariant. 2

Theorem 3.2. Let A be a Banach algebra, let ϕ be an inner automorphism of A
and let ∆ be a ϕ-derivation on A. If sup{r(x−1∆(a)) : a ∈ A invertible} < ∞, then
∆ leaves each primitive ideal of A invariant.

Proof. Assume that s = sup{r(z−1∆(c))| c ∈ A invertible} < ∞. Given b ∈ rad(A),
we have (1 + b)−1 = 1− b(1 + b)−1 ∈ 1 + rad(A) and hence

r((1 + b)−1∆(1 + b)) = r((1− b(1 + b)−1)∆(b))

= r(∆(b)− b(1 + b)−1∆(b))

= r(σ(∆(b)− b(1 + b)−1∆(b)))

= r(σ(∆(b))− σ(b(1 + b)−1∆(b)))

= r(σ(∆(b))) = r(∆(b)).

By the assumption, it follows that r(∆(b)) ≤ s < ∞ for all b ∈ rad(A), whence
r(∆(b)) = 0 for all b ∈ rad(A). Then we see that

r(a∆(b)) = r(∆(ab)−∆(a)ϕ(b))

= r(σ(∆(ab)−∆(a)ϕ(b))

= r(σ(∆(ab))− σ(∆(a)ϕ(b)))

= r(σ(∆(ab)))

= r(∆(ab)) = 0

for all b ∈ rad(A) and all a ∈ A. Hence ∆(rad(A)) ⊆ rad(A) as before. The
remainder follows the same fashion as in the proof of Theorem 3.1. Hence ∆ leaves
each primitive ideal of A invariant. We complete the proof. 2
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