DOI QR코드

DOI QR Code

Precise Measurement Method and Error Analysis with Roughness Variables for Estimation of Scattering Coefficients

지표면 산란 계수 예측을 위한 정확한 지표면 거칠기 변수 측정 방법 및 오차 분석

  • Kweon, Soon-Koo (Department of Electronic Information and Communication Engineering, Hongik University) ;
  • Hwang, Ji-Hwan (Department of Electronic Information and Communication Engineering, Hongik University) ;
  • Oh, Yisok (Department of Electronic Information and Communication Engineering, Hongik University) ;
  • Hong, Sungwook (National Meteorological Satellite Center)
  • 권순구 (홍익대학교 전자정보통신공학과) ;
  • 황지환 (홍익대학교 전자정보통신공학과) ;
  • 오이석 (홍익대학교 전자정보통신공학과) ;
  • 홍성욱 (국가기상위성센터)
  • Received : 2012.10.17
  • Accepted : 2012.12.26
  • Published : 2013.01.30

Abstract

The input parameters of scattering models for computing the backscattering coefficients of earth terrains are mainly soil moisture and surface roughness. The backscattering coefficients of soil surfaces are more sensitive to surface roughness than soil moisture. In this study, we propose a precise measurement method for roughness parameters and analyze measurement errors. We measured surface roughness using a pin-board profiler(1 m, 0.5 cm interval) and a laser profiler(1 m, 0.25 cm interval). The measurement differences between two profilers in an average sense are 0.097 cm for root-mean-square (RMS) height and 1.828 cm for correlation length. The analysis of the correlation functions and relative errors shows that the laser measurements are more stable than the pin-board measurements. The differences of the calculated backscattering coefficients using a surface scattering model between pin-board and laser profiler measurements are less than 1 dB.

지표면의 후방 산란 계수를 계산하는 지표면 산란 모델의 입력 변수로는 크게 수분함유량과 지표면 거칠기가 있고, 산란 계수 계산에 있어 지표면 거칠기의 영향이 수분함유량의 영향보다 크다. 본 연구에서는 지표면 거칠기의 정확한 측정 방법을 제기하고, 측정 오차를 분석한다. 이를 위하여 대표적인 지표면 거칠기 측정 장치인 pin-board profiler(1 m, 0.5 cm 간격)와 laser profiler(1 m, 0.25 cm 간격)를 이용하여 실제 지표면을 측정하였다. 두 측정 장치의 평균 차이는 유효 높이(RMS height)가 0.097 cm, 상관 길이(correlation length)가 1.828 cm이었다. 그리고 상관 함수, 상대오차를 분석한 결과, laser-profiler의 반복 측정에 대한 장치의 안전성이 더 좋았다. 두 측정 장치의 차이가 후방 산란 계수에 미치는 영향을 분석하기 위해 지표면 산란 모델을 이용하여 비교한 결과, 입사각 $20{\sim}60^{\circ}$에서 1 dB 이하의 차이를 보였다.

Keywords

References

  1. F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote Sensing: Active and Passive, Artech House: Boston, MA, vol. 2, 1982.
  2. Y. Oh, Y. -C. Kay, "Condition for precise measurement of soil surface rughness", IEEE Trans. Geosci. Remote Sensing, vol. 36, no. 2, pp. 691-695, Mar. 1998. https://doi.org/10.1109/36.662751
  3. N. Baghdadi, P. Pailou, G. Grandjean, P. Dubois, and M. Davidson, "Relationship between profile length and roughness variables for natural surfaces", International Journal of Remote Sensing, vol. 21, no. 17, pp. 3375-3381, Nov. 2010.
  4. Y. Oh, J. -Y. Hong, "Effect of surface profile length on the backscattering coefficients of bare surfaces", IEEE Trans. Geosci. Remote Sensing, vol. 45, no. 3, pp. 632-638, Mar. 2007. https://doi.org/10.1109/TGRS.2006.888137
  5. M. W. J. Davidson, F. Mattia, G. Satalino, N. E. C. Verhoest, T. Le Toan, M. Borgeaud, J. M. B. Louis, and E. Attema, "Joint statistical properties of RMS height and correlation length derived from multisite 1-m roughness measurements," IEEE Trans. Geosci. Remote Sensing, vol. 41, no. 7, pp. 1651-1658, Jul. 2003. https://doi.org/10.1109/TGRS.2003.813361
  6. F. Mattia, M. W. J. Davidson, T. Le Toan, C. M. F. D'Haese, N. E. C. Verhoest, A. M. Gatti, and M. Borgeaud, "A comparison between soil roughness statistics used in surface scattering models derived from mechanical nd laser profilers", IEEE Trans. Geosci. Remote Sensing, vol. 41, no. 7, pp. 1659-1671, Jul. 2003. https://doi.org/10.1109/TGRS.2003.813359
  7. Y. Oh, K. Sarabandi, and F. T. Ulaby, "Semi-empirical model of the emsemble-averaged differential mueller matrix for microwave backscattering from bare soil surfaces", IEEE Trans. Geosci. Remote Sensing, vol. 30, no. 6, pp. 1348-1355, Jun. 2002.

Cited by

  1. Analysis of Backscattering Coefficients of Corn Fields Using the First-Order Vector Radiative Transfer Technique vol.25, pp.4, 2014, https://doi.org/10.5515/KJKIEES.2014.25.4.476