DOI QR코드

DOI QR Code

Design of Broadband Spiral Antenna for a Portable Non-Linear Junction Detector System

휴대형 NLJD용 광대역 스파이럴 안테나의 설계

  • Kim, Jeong-Won (Department of Radio Communication Engineering, Korea Maritime University) ;
  • Min, Kyeong-Sik (Department of Radio Communication Engineering, Korea Maritime University)
  • 김정원 (한국해양대학교 전파공학과) ;
  • 민경식 (한국해양대학교 전파공학과)
  • Received : 2012.11.08
  • Accepted : 2013.01.14
  • Published : 2013.01.30

Abstract

This paper proposes the design of broadband spiral antenna for a potable non-linear junction detector (NLJD) system. To realize the broadband antenna design, it was considered optimization of the number of spiral turns by iteration calculation. Ground plane with the Archimedean spiral slit to keep the same current distribution between radiating plane and ground is considered for circular polarization design. In order to realize high directivity and high gain of the proposed antenna, the cavity wall and the metal cap which is located on back of ground plane were also considered in design. Measurement results of return loss were agreed well with VSWR 2:1 at interested frequency band among 2.4 to 2.44 GHz, 4.84 to 4.92 GHz and 7.28 to 7.36 GHz. Measured axial ratio was observed 3 dB below and showed reasonable agreement with simulation results. Characteristics of the RHCP(Right Hand Circular Polarization) with the measured gain of 6.8 dBi above at interested frequency band were also observed.

본 논문은 휴대형 비선형 소자 탐지기용 광대역 스파이럴 안테나의 설계를 제안한 것이다. 광대역 안테나의 설계를 위해 방사면 위의 스파이럴 턴 수를 최적화하는 반복 계산이 고려되었다. 원형 편파 설계를 위해 접지면과 방사면 사이의 동일 전류 분포를 유지하기 위해 Archimedean 스파이럴 슬릿을 가진 접지면이 고려되었다. 또한, 고 이득과 고 지향성을 실현하기 위해 캐비티 벽과 금속 캡을 접지면 뒤에 고려하였다. 반사 손실의 측정결과는 관심 대역인 2.4~2.44 GHz, 4.84~4.92 GHz, 7.28~7.36 GHz에서 VSWR 2:1과 잘 일치하였다. 측정된 축비 값은 3 dB 이하로 관측되었고, 모의 실험 결과와도 잘 일치하였다. 관심 대역에서 6.8 dBi 이상의 측정된 이득을 가지는 우수 원형 편파 특성이 관측되었다.

Keywords

References

  1. Hiltmar Schubert, Andrey Kuznetsov, Detection and Disposal of Improvised Explosives - NATO Security through Science Series, Springer, pp. 237-239, 2006.
  2. K. Wincza, S. Gruszczynski, and J. Borgosz, "Dualband capacitive feed antenna for nonlinear junction detection device", Microwave Techniques, COMITE 2008. 14th Conference on, 2008.
  3. 김태근, 민경식, "비선형 소자 탐지용 광대역 스파이럴 안테나의 설계", 한국전자파학회논문지, 22(1), pp. 81-88, 2011년 1월.
  4. Julius A. Kaiser, "The Archimedean two-wire spiral antenna", IRE Transaction on Antenna and Propagation, vol. 8, pp. 312-323, May 1960. https://doi.org/10.1109/TAP.1960.1144840
  5. L. Schreider, X. Begaud, M. Soiron, and B. Perere, "Design of a broadband Archimedean spiral antenna above a thin modified electromagnetic band gap substrate", Antennas and Propagation of First European Conference, Nov. 2006.
  6. Jui-Ching Cheng, "Theoretical modeling of cavitybacked patch antennas using a hybrid technique", IEEE Transaction on Antennas and Propagation, vol. 43, no. 9, pp. 1003-1013, Sep. 1995. https://doi.org/10.1109/8.410218
  7. Quan Li, Zhongxiang Shen, "An inverted microstrip- fed cavity-backed slot antenna for circular polarization", IEEE Antenna and Wireless Propagation Letters, vol. 1, pp. 190-193, 2002. https://doi.org/10.1109/LAWP.2002.807786
  8. Kyeong-Sik Min, J. Hirokawa, K. Sakurai, M. Ando, and N. Goto, "Single-layer dipole array for linear- to-circular polarization conversion of slotted waveguide array", IEEE Proceedings Microwave, Antenna & Propagation Pt. H, vol. 143, no. 3, pp. 211-216, Jun. 1996. https://doi.org/10.1049/ip-map:19960445

Cited by

  1. Design for High Gain Spiral Antenna by Added Conical Cavity Wall vol.13, pp.3, 2013, https://doi.org/10.5515/JKIEES.2013.13.3.165