DOI QR코드

DOI QR Code

인간 제대혈 유래 혈관내피세포의 혈관 튜브 형성능에 미치는 Sirtuin-2 (SIRT2)의 역활

The Role of Sirtuin-2 in Tubular Forming Activity of Human Umbilical Vein Endothelial Cells

  • 정석윤 (부산대학교 의학전문대학원 생리학교실 혈관의학 및 줄기세포학 실험실) ;
  • 김철민 (부산대학교 의학전문대학원 생리학교실 혈관의학 및 줄기세포학 실험실) ;
  • 김다연 (부산대학교 의학전문대학원 생리학교실 혈관의학 및 줄기세포학 실험실) ;
  • 이동형 (부산대학교병원 산부인과) ;
  • 이규섭 (부산대학교병원 산부인과) ;
  • 권상모 (부산대학교 의학전문대학원 생리학교실 혈관의학 및 줄기세포학 실험실)
  • Jung, Seok Yun (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University) ;
  • Kim, Chul Min (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University) ;
  • Kim, Da Yeon (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University) ;
  • Lee, Dong Hyung (Department of Obstetrics & Gynecology, College of Medicine, Pusan National University) ;
  • Lee, Kyu Sup (Department of Obstetrics & Gynecology, College of Medicine, Pusan National University) ;
  • Kwon, Sang-Mo (Laboratory of Vascular Medicine & Stem Cell Biology, Department of Physiology, School of Medicine, Pusan National University)
  • 투고 : 2012.10.15
  • 심사 : 2013.01.06
  • 발행 : 2013.01.30

초록

Sirtuin family 단백질은 암, 당뇨, 심혈관 질환, 뇌신경계 질환과 같은 노화와 연관된 질병들의 발병에 중요한 역할을 하는 것으로 알려져 있다. 우선적으로 혈관내피세포를 이용하여 Hypoxia에서의 sirtuin family의 발현을 확인한 결과, SIRT2 mRNA가 가장 강하게 발현되는 결과를 얻었다. 혈관신생과정에서의 SIRT2 단백질의 생리학적 역할을 규명하고자, 본 실험실에서는 저산소상태에서의 SIRT2의 생리학적인 의미에 주안점을 두었다. Normoxia에서 SIRT2는 세포질에 존재하고 있으나, hypoxia에 의해서 SIRT2 단백질이 핵 내로 이동이 일어남을 확인하였다. 또한 hypoxia에 의해서 SIRT2와 혈관신생인자인 VEGF의 발현이 증가하며, Normoxia와 hypoxia 두 환경에서 혈관내피세포의 혈관형성능력이 SIRT2 inhibitor인 AK-1에 의해서 억제된 것을 확인하였다. 본 연구결과를 통해서 SIRT2가 혈관신생과정을 조절하는 중요한 역할을 함을 시사하였다.

Sirtuin proteins have emerged as important modulators of several age-associated diseases. These include cancer and diabetes, as well as cardiovascular and neurodegenerative diseases. Among the sirtuin family members, SIRT2 mRNA is strongly expressed. To investigate the pathophysiological significance of SIRT2 as a primary regulator of angiogenesis, we focused on the biological role of SIRT2 under hypoxic conditions, examining the gene expression pattern of sirtuin family members in human umbilical vein endothelial cells (HUVECs). SIRT2 was expressed primarily in the cytoplasm, but it was dynamically trans-localized in the nuclear by hypoxia stimuli. Interestingly, both SIRT2 and the pro-angiogenic factor, VEGF, were up- regulated by hypoxia. A Matrigel assay demonstrated that the HUVECs formed a tube-like structure under hypoxia. The SIRT2 inhibitor, AK-1, significantly decreased the tube-forming activity of the HUVECs under either normoxia or hypoxia conditions. These findings suggest that SIRT2 might be a key regulator of angiogenesis.

키워드

참고문헌

  1. Ahuja, N., Schwer, B., Carobbio, S., Waltregny, D., North, B. J., Castronovo, V., Maechler, P. and Verdin, E. 2007. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase. J Biol Chem 282, 33583-33592. https://doi.org/10.1074/jbc.M705488200
  2. Alcendor, R. R., Gao, S., Zhai, P., Zablocki, D., Holle, E., Yu, X., Tian, B., Wagner, T., Vatner, S. F. and Sadoshima, J. 2007. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100, 1512-1521. https://doi.org/10.1161/01.RES.0000267723.65696.4a
  3. Baur, J. A., Pearson, K. J., Price, N. L., Jamieson, H. A., Lerin, C., Kalra, A., Prabhu, V. V., Allard, J. S., Lopez-Lluch, G., Lewis, K., Pistell, P. J., Poosala, S., Becker, K. G., Boss, O., Gwinn, D., Wang, M., Ramaswamy, S., Fishbein, K. W., Spencer, R. G., Lakatta, E. G., Le Couteur, D., Shaw, R. J., Navas, P., Puigserver, P., Ingram, D. K., de Cabo, R. and Sinclair, D. A. 2006. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337-342. https://doi.org/10.1038/nature05354
  4. Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. and Kieda, C. 2011. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J Cell Mol Med 15, 1239-1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x
  5. Dioum, E. M., Chen, R., Alexander, M. S., Zhang, Q., Hogg, R. T., Gerard, R. D. and Garcia, J. A. 2009. Regulation of hypoxia-inducible factor 2 alpha signaling by the stress-responsive deacetylase sirtuin 1. Science 324, 1289-1293. https://doi.org/10.1126/science.1169956
  6. Frye, R. A. 2000. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273, 793-798. https://doi.org/10.1006/bbrc.2000.3000
  7. Haigis, M. C. and Sinclair, D. A. 2010. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5, 253-295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
  8. Krock, B. L., Skuli, N. and Simon, M. C. 2011. Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2, 1117-1133. https://doi.org/10.1177/1947601911423654
  9. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., Geny, B., Laakso, M., Puigserver, P. and Auwerx, J. 2006. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  10. Landry, J., Sutton, A., Tafrov, S. T., Heller, R. C., Stebbins, J., Pillus, L. and Sternglanz, R. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97, 5807-5811. https://doi.org/10.1073/pnas.110148297
  11. Lim, J. H., Lee, Y. M., Chun, Y. S., Chen, J., Kim, J. E. and Park, J. W. 2010. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cell 38, 864-878. https://doi.org/10.1016/j.molcel.2010.05.023
  12. Liszt, G., Ford, E., Kurtev, M. and Guarente, L. 2005. Mouse Sir2 homolog SIRT6 is a nuclear ADP-ribosyltransferase. J Biol Chem 280, 21313-21320. https://doi.org/10.1074/jbc.M413296200
  13. Mattagajasingh, I., Kim, C. S., Naqvi, A., Yamamori, T., Hoffman, T. A., Jung, S. B., DeRicco, J., Kasuno, K. and Irani, K. 2007. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA 104, 14855-14860. https://doi.org/10.1073/pnas.0704329104
  14. Milne, J. C., Lambert, P. D., Schenk, S., Carney, D. P., Smith, J. J., Gagne, D. J., Jin, L., Boss, O., Perni, R. B., Vu, C. B., Bemis, J. E., Xie, R., Disch, J. S., Ng, P. Y., Nunes, J. J., Lynch, A. V., Yang, H., Galonek, H., Israelian, K., Choy, W., Iffland, A., Lavu, S., Medvedik, O., Sinclair, D. A., Olefsky, J. M., Jirousek, M. R., Elliott, P. J. and Westphal, C. H. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 450, 712-716. https://doi.org/10.1038/nature06261
  15. North, B. J., Marshall, B. L., Borra, M. T., Denu, J. M. and Verdin, E. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 11, 437-444. https://doi.org/10.1016/S1097-2765(03)00038-8
  16. North, B. J. and Verdin, E. 2007. Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis. PLoS One 2, e784. https://doi.org/10.1371/journal.pone.0000784
  17. Outeiro, T. F., Kontopoulos, E., Altmann, S. M., Kufareva, I., Strathearn, K. E., Amore, A. M., Volk, C. B., Maxwell, M. M., Rochet, J. C., McLean, P. J., Young, A. B., Abagyan, R., Feany, M. B., Hyman, B. T. and Kazantsev, A. G. 2007. Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease. Science 317, 516-519. https://doi.org/10.1126/science.1143780
  18. Potente, M., Ghaeni, L., Baldessari, D., Mostoslavsky, R., Rossig, L., Dequiedt, F., Haendeler, J., Mione, M., Dejana, E., Alt, F. W., Zeiher, A. M. and Dimmeler, S. 2007. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev 21, 2644-2658. https://doi.org/10.1101/gad.435107
  19. Saunders, L. R. and Verdin, E. 2007. Sirtuins: critical regulators at the crossroads between cancer and aging. Oncogene 26, 5489-5504. https://doi.org/10.1038/sj.onc.1210616
  20. Sauve, A. A., Wolberger, C., Schramm, V. L. and Boeke, J. D. 2006. The biochemistry of sirtuins. Annu Rev Biochem 75, 435-465. https://doi.org/10.1146/annurev.biochem.74.082803.133500
  21. Smith, J. S., Brachmann, C. B., Celic, I., Kenna, M. A., Muhammad, S., Starai, V. J., Avalos, J. L., Escalante- Semerena, J. C., Grubmeyer, C., Wolberger, C. and Boeke, J. D. 2000. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97, 6658-6663. https://doi.org/10.1073/pnas.97.12.6658
  22. Tanner, K. G., Landry, J., Sternglanz, R. and Denu, J. M. 2000. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97, 14178-14182. https://doi.org/10.1073/pnas.250422697
  23. Wang, G. L., Jiang, B. H., Rue, E. A. and Semenza, G. L. 1995 Hypoxia-inducible factor 1 is a basic-helix-loop-helix- PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad. Sci USA 92, 5510-5514. https://doi.org/10.1073/pnas.92.12.5510
  24. Wang, G. L. and Semenza, G. L. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J Biol Chem 268, 21513-21518.