DOI QR코드

DOI QR Code

저항성 운동이 골격근 유전자 발현에 미치는 영향: Beadarray 분석

Effect of Resistance Training on Skeletal Muscle Gene Expression in Rats: a Beadarray Analysis

  • 오승렬 (서울대학교 건강운동과학연구실) ;
  • 오상덕 (한양대학교 운동생리학연구실)
  • Oh, Seung-Lyul (Health and Exercise Science Laboratory, Institute of Sports Science, Seoul National University) ;
  • Oh, Sang-Duk (Exercise Physiology Laboratory, Research Institute of Sports Science, Hanyang University)
  • 투고 : 2012.09.17
  • 심사 : 2013.01.04
  • 발행 : 2013.01.30

초록

본 연구의 목적은 저항성 운동 후 골격근에서 저항성 관련 유전자를 규명하는 것이다. 연구 목적을 달성하기 위하여 총 32두의 Sprague-Dawley계 수컷 흰쥐를 분양 받은 후 4주차 통제군(4 wks CON, n=8), 8주차 통제군(8 wks CON, n=8), 4주차 운동군(4 wks REG, n=8), 8주차 운동군(8 wks REG, n=8)으로 집단을 분류하였다. 저항성 운동군은 꼬리에 무게를 달고 동물용 사다리(1-m vertical, 85 degree incline)를 오르는 저항성 사다리 운동을 1회 10번, 주당 3일, 4주와 8주간 점증적으로 실시하였으며, 골격근 조직은 저항성 운동 후 장무지굴근(flexor hallucis longus; FHL)을 적출하여 분석에 이용하였다. 적출한 골격근에서 total RNA를 분류한 후, 대규모 유전자 발현분석을 위하여 Illumina RatRef-12 Expression BeadChip을 이용한 Beadarray를 시행하였으며, Beadarray 결과를 확인하기 위해 qPCR (real-time quantitative PCR)를 실시하였다. 유의성 검증은 Beadstudio software를 이용하여 실시하였으며, Beadarray 데이터 중 Detection p-value to <0.01, M-value {M= $log_2$ (condition)-$log_2$ (reference)} to >1.0, DiffScore to >20인 유전자만을 통계적으로 의미 있는 유전자로 선택하였다. 4주차 저항성 운동 후 통제집단에 비해 2배 이상 유의하게 발현이 증가한 유전자는 30개였으며, 6개의 유전자가 감소하였다. 8주차 저항성 운동 후에는 5개의 유전자가 발현이 증가하였으며, 12개의 유전자가 유의하게 감소하였다. 연구결과 다음의 유전자를 포함한 저항성 운동과 근비대와 관련 후보 유전자를 도출하였다; 1) 세포 성장 조절(IGFBP1, PLA2G2A, OKL38); 2) 근육발생(CSRP3); 3) 조직 재생과 근육 발달(MUSTN1, MYBPH); and 4) 비대 모델(CYR61, ATF3, NR4A3); and 5) 당대사(G6PC, PCK1). 이러한 연구결과는 차후 저항성 운동과 관련된 다양한 생리학적 변인을 연구하는데 있어서 기초 자료를 제공할 것으로 생각된다.

The aim was to examine resistance exercise-related genes after 8 weeks of resistance training. Thirty-two male Sprague-Dawley rats were divided into four groups: 4 weeks sedentary (4 wks CON, n=8), 8 weeks sedentary (8 wks CON, n=8), 4 weeks exercise training (4 wks REG, n=8), and 8 weeks exercise training (8 wks REG, n=8). The rats were trained to climb a 1-m vertical incline (85-degree), with weights secured to their tails. They climbed 10 times, 3 days per week, for 8 consecutive weeks. Skeletal muscle was taken from the flexor halucis longus after the exercise training. After separating the total RNA, large-scale gene expression was investigated by beadarray (Illumina RatRef-12 Expression BeadChip) analysis, and qPCR was used to inspect the beadarray data and to analyze the RNA quantitatively. The detection p-value for the genes was p<0.01, the M-value {M=$log_2$(condition)-$log_2$(reference)} was >1.0, and the DiffScore was >20. In total, the expression of 30 genes significantly increased 4 weeks after the exercise training, and the expression of six genes decreased. At 8 weeks, the expression of five genes significantly increased and that of 12 decreased. Several genes are potentially involved in resistance exercise and muscle hypertrophy, including 1) regulation of cell growth (IGFBP1, PLA2G2A, OKL38); 2) myogenesis (CSRP3); 3) tissue regeneration and muscle development (MUSTN1, MYBPH); 4) hypertrophy (CYR61, ATF3, NR4A3); and 5) glucose metabolism (G6PC, PCK1). These results may help to explain previously reported physiological changes of the skeletal muscle and suggest new avenues for further investigation.

키워드

참고문헌

  1. Barash, I. A., Mathew, L., Ryan, A. F., Chen, J. and Lieber, R. L. 2004. Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol 286, C355-364. https://doi.org/10.1152/ajpcell.00211.2003
  2. Booth, F. W., Tseng, B. S., Fluck, M. and Carson, J. A. 1998. Molecular and cellular adaptation of muscle in response to physical training. Acta Physiol Scand 162, 343-350. https://doi.org/10.1046/j.1365-201X.1998.0326e.x
  3. Carson, J. A., Nettleton, D. and Reecy, J. M. 2002. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 16, 207-209.
  4. Chen, Y. W., Hubal, M. J., Hoffman, E. P., Thompson, P. D. and Clarkson, P. M. 2003. Molecular responses of human muscle to eccentric exercise. J Appl Physiol 95, 2485-2494.
  5. Chen, Y. W., Nader, G. A., Baar, K. R., Fedele, M. J., Hoffman, E. P. and Esser, K. A. 2002. Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. J Physiol 545, 27-41. https://doi.org/10.1113/jphysiol.2002.021220
  6. Fehrenbach, E., Zieker, D., Niess, A. M., Moeller, E., Russwurm, S. and Northoff, H. 2003. Microarray technology-- the future analyses tool in exercise physiology? Exerc Immunol Rev 9, 58-69.
  7. Fitts, R. H. 2003. Effects of regular exercise training on skeletal muscle contractile function. Am J Phys Med Rehabil 82, 320-331.
  8. Gersch, R. P. and Hadjiargyrou, M. 2009. Mustn1 is expressed during chondrogenesis and is necessary for chondrocyte proliferation and differentiation in vitro. Bone 45, 330-338. https://doi.org/10.1016/j.bone.2009.04.245
  9. Goldspink, G. 1998. Selective gene expression during adaptation of muscle in response to different physiological demands. Comp Biochem Physiol B Biochem Mol Biol 120, 5-15. https://doi.org/10.1016/S0305-0491(98)00018-2
  10. Heller, M. J. 2002. DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4, 129-153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438
  11. Hornberger, T. A., JR. and Farrar, R. P. 2004. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol 29, 16-31. https://doi.org/10.1139/h04-002
  12. Kostek, M. C., Chen, Y. W., Cuthbertson, D. J., Shi, R., Fedele, M. J., Esser, K. A. and Rennie, M. J. 2007. Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics 31, 42-52. https://doi.org/10.1152/physiolgenomics.00151.2006
  13. Lee, S., Barton, E. R., Sweeney, H. L. and Farrar, R. P. 2004. Viral expression of insulin-like growth factor-I enhances muscle hypertrophy in resistance-trained rats. J Appl Physiol 96, 1097-1104.
  14. Liu, C., Gersch, R. P., Hawke, T. J. and Hadjiargyrou, M. 2010. Silencing of Mustn1 inhibits myogenic fusion and differentiation. Am J Physiol Cell Physiol 298, C1100-1108. https://doi.org/10.1152/ajpcell.00553.2009
  15. Lombardo, F., Komatsu, D. and Hadjiargyrou, M. 2004. Molecular cloning and characterization of Mustang, a novel nuclear protein expressed during skeletal development and regeneration. FASEB J 18, 52-61. https://doi.org/10.1096/fj.03-0521com
  16. Maher, A. C., Fu, M. H., Isfort, R. J., Varbanov, A. R., Qu, X. A. and Tarnopolsky, M. A. 2009. Sex differences in global mRNA content of human skeletal muscle. PLoS One 4, e6335. https://doi.org/10.1371/journal.pone.0006335
  17. Mahoney, D. J., Parise, G., Melov, S., Safdar, A. and Tarnopolsky, M. A. 2005. Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. FASEB J 19, 1498-1500.
  18. Ort, T., Gerwien, R., Lindborg, K. A., Diehl, C. J., Lemieux, A. M., Eisen, A. and Henriksen, E. J. 2007. Alterations in soleus muscle gene expression associated with a metabolic endpoint following exercise training by lean and obese Zucker rats. Physiol Genomics 29, 302-311. https://doi.org/10.1152/physiolgenomics.00257.2006
  19. Pomies, P., Louis, H. A. and Beckerle, M. C. 1997. CRP1, a LIM domain protein implicated in muscle differentiation, interacts with alpha-actinin. J Cell Biol 139, 157-168. https://doi.org/10.1083/jcb.139.1.157
  20. Roth, S. M., Ferrell, R. E., Peters, D. G., Metter, E. J., Hurley, B. F. and Rogers, M. A. 2002. Influence of age, sex, and strength training on human muscle gene expression determined by microarray. Physiol Genomics 10, 181-190.
  21. Trappe, S., Godard, M., Gallagher, P., Carroll, C., Rowden, G. and Porter, D. 2001. Resistance training improves single muscle fiber contractile function in older women. Am J Physiol Cell Physiol 281, C398-406.
  22. Trappe, S., Williamson, D., Godard, M., Porter, D., Rowden, G. and Costill, D. 2000. Effect of resistance training on single muscle fiber contractile function in older men. J Appl Physiol 89, 143-152.
  23. Vincent, B., Windelinckx, A., Nielens, H., Ramaekers, M., VAN Leemputte, M., Hespel, P. and Thomis, M. A. 2010. Protective role of alpha-actinin-3 in the response to an acute eccentric exercise bout. J Appl Physiol 109, 564-573. https://doi.org/10.1152/japplphysiol.01007.2009
  24. Widrick, J. J., Stelzer, J. E., Shoepe, T. C. and Garner, D. P. 2002. Functional properties of human muscle fibers after short-term resistance exercise training. Am J Physiol Regul Integr Comp Physiol 283, R408-416.
  25. Yang, J. Y., Nam, J. H., Park, H. and Cha, Y. S. 2006. Effects of resistance exercise and growth hormone administration at low doses on lipid metabolism inmiddle-aged female rats. Eur J Pharmacol 539, 99-107. https://doi.org/10.1016/j.ejphar.2006.03.079
  26. Zambon, A. C., Mcdearmon, E. L., Salomonis, N., Vranizan, K. M., Johansen, K. L., Adey, D., Takahashi, J. S., Schambelan, M. and Conklin, B. R. 2003. Time- and exercise- dependent gene regulation in human skeletal muscle. Genome Biol 4, R61. https://doi.org/10.1186/gb-2003-4-10-r61

피인용 문헌

  1. Mustn1: A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene vol.19, pp.1, 2018, https://doi.org/10.3390/ijms19010206