DOI QR코드

DOI QR Code

Culture Conditions for Improving Extracellular Lipolytic Enzyme Production by a Novel Thermophilic Geobacillus sp. AR1

신규 고온성 Geobacillus sp. AR1의 extracellular 지질분해효소 생산을 위한 배양조건

  • Park, Su-Jin (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Jeon, Sung-Jong (Department of Biotechnology & Bioengineering, Dong-Eui University)
  • Received : 2012.11.14
  • Accepted : 2013.01.04
  • Published : 2013.01.30

Abstract

A microorganism (strain AR1) producing an extracellular lipolytic enzyme was isolated from hot springs located in Beppu, Japan. Phylogenetic analysis based on the 16S rDNA sequence and biochemical studies indicated that AR1 belongs to the genus Geobacillus. This study focused on novel strategies to increase extracellular lipolytic enzyme production by this novel Geobacillus sp. AR1. Cultures of the AR1 strain grew within a wide temperature range (from 35 to $75^{\circ}C$); the optimum temperature was $65^{\circ}C$. The pH for optimal growth was 6.5, whereas the optimum pH for lipolytic enzyme production was 8.5. The presence of oils in the culture medium led to improvements in lipolytic enzyme activity. Soybean oil was the most efficient inducer, and it yielded better results when added in the exponential phase. On the other hand, the addition of chemical surfactants led to lipolytic enzyme production. Their addition to the culture could affect the location of the enzyme activity. The addition of Tween 20 in the stationary phase significantly increased the proportion of the extracellular enzyme activity. According to the results, following the addition of soybean oil and Tween 20 in the exponential and stationary phases, the extracellular lipolytic activity was increased 2.4-fold compared with that of a control.

Extracellular 지질분해효소를 생산하는 균주 AR1은 일본 벳부 온천수에서 분리하였다. 분리된 균주의 16s rRNA 염기서열을 분석하고 계통학적으로 분류한 결과, AR1 균주는 신규 Geobacillus sp.에 속하는 것으로 동정되었다. 본 연구는 Geobacillus sp. AR1 균주의 extracellular 지질분해효소 생산을 향상시키기 위한 새로운 방법에 초점을 맞추었다. AR1 균주는 $35{\sim}75^{\circ}C$의 넓은 온도 범위에서 생육하였고 최적온도는 $65^{\circ}C$이었다. 생육을 위한 최적 pH는 6.5인 반면, 효소 생산을 위한 pH는 8.5로 차이점을 보였다. 배양 중에 지질 화합물의 첨가는 지질분해효소 생산을 유도하였고, soybean oil을 대수증식기에 첨가 했을 때 가장 효율적인 유도 효과를 나타내었다. 한편, 계면활성제는 지질분해효소의 생산을 유도하고 세포 내외의 위치에 영향을 줄 수 있다. AR1 균주는 정지기에 Tween 20을 첨가할 경우, 효소의 세포 외 분비 효율이 크게 증가하였다. 이들 결과를 바탕으로 soybean oil과 Tween 20을 각각 대수증식기와 정지기에 첨가함에 따라 extracellular 효소 생산이 대조구에 비해 2.4배 증가하는 것으로 확인 되었다.

Keywords

References

  1. Arpigny, J. L. and Jaeger, K. E. 1999. Bacterial lipolytic enzymes: classification and properties. Biochem J 343, 177-183. https://doi.org/10.1042/0264-6021:3430177
  2. Brockman, H. W., Mornsen, W. E. and Tsuijita, T. 1988. The biology, biochemistry and biotechnology of lipases. J Am Oil Chem Soc 65, 891-896. https://doi.org/10.1007/BF02544505
  3. Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S. and Sayadi, S. 2011. Strategy for improving extracellular lipolytic activities by a novel thermotolerant Staphylococcus sp. strain. Lipids Health Dis 10, 1-8. https://doi.org/10.1186/1476-511X-10-1
  4. Deive, F. J., Alvarez, M. S., Morán, P., Sanroman, M. A. and Longo, M. A. 2012. A process for extracellular thermostable lipase production by a novel Bacillus thermoamylovorans strain. Bioprocess Biosyst Eng 35, 931-941. https://doi.org/10.1007/s00449-011-0678-9
  5. Deive, F. J., Carvalho, E., Pastrana, L., Rua, M. L., Longo, M. A. and Sanroman, M. A. 2009. Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresour Technol 100, 3630-3637. https://doi.org/10.1016/j.biortech.2009.02.053
  6. Dominguez, A., Sanroman, A., Fucinos, P., Rua, M. L., Pastrana, L. and Longo, M. A. 2004. Quantification of intraand extra-cellular thermophilic lipase/esterase production by Thermus sp. Biotechnol Lett 26, 705-708. https://doi.org/10.1023/B:BILE.0000024092.27943.75
  7. Fucinos, P., Abadin, C. M., Sanroman, A., Longo, M. A., Pastrana, L. and Rua, M. L. 2005. Identification of extracellular lipases/esterases produced by Thermus thermophilus HB27: Partial purification and preliminary biochemical characterization. J Biotechnol 117, 233-241. https://doi.org/10.1016/j.jbiotec.2005.01.019
  8. Fucinos, P., Dominguez, A., Sanroman, M. A., Longo, M. A., Rua, M. L. and Pastrana, L. 2005. Production of thermostable lipolytic activity by Thermus species. Biotechnol Prog 21, 1198-1205.
  9. Gao, L., Xu, J. H., Li, X. J. and Liu, Z. Z. 2004. Optimization of Serratia marcescens lipase production for enantioselective hydrolysis of 3-phenylglycidic acid ester. J Ind Microbiol Biotechnol 31, 525-530. https://doi.org/10.1007/s10295-004-0182-1
  10. Gulati, R., Saxena, R. K., Gupta, R., Yadav, R. P. and Davidson, W. S. 2000. Parametric optimisation of Aspergillus terreus lipase production and its potential in ester synthesis. Process Biochem 35, 459-464.
  11. Hsu, K. H., Lee, G. C. and Shaw, J. F. 2008. Promoter analysis and differential expression of the Candida rugosa lipase gene family in response to culture conditions. J Agric Food Chem 56, 1992-1998. https://doi.org/10.1021/jf073076o
  12. Kim, D. J., Morikawa, M., Takagi, M. and Imanaka, T. 1995. Gene cloning and characterization of thermostable peptidyl prolyl cis-trans isomerase (PPIase) from Bacillus stearothermophilus. J Ferment Bioeng 79, 87-94. https://doi.org/10.1016/0922-338X(95)94073-Z
  13. Kwon, D. Y. and Rhee, J. S. 1986. A simple and rapid colorimetric method for determination of free fatty acids for lipase assay. JAOCS 63, 89-92. https://doi.org/10.1007/BF02676129
  14. Lin, S. F., Chiou, C. M. and Tsai, Y. C. 1995. Effect of Triton X-100 on alkaline lipase production by Pseudomonas pseudoalcaligenes F-111. Biotechnol Lett 17, 959-962. https://doi.org/10.1007/BF00127434
  15. Logan, N. A. and Berkeley, R. C. 1984. Identification of Bacillus strains using the API system. J Gen Microbiol 130, 1871-1882.
  16. Muralidhar, R. V., Chirumamila, R. R., Marchant, R. and Nigam, P. 2001. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources. Biochem Eng J 9, 17-23. https://doi.org/10.1016/S1369-703X(01)00117-6
  17. Odibo, F. J. C., Okereke, U. O. and Oyeka, C. A. 1995. Influence of culture conditions on the production of lipase of Hendersonula toruloidea. Bioresour Technol 54, 81-83. https://doi.org/10.1016/0960-8524(95)00083-6
  18. Santos, M. A., Williams, R. A. D. and da Costa, M. S. 1989. Numerical taxonomy of Thermus isolated from hot springs in Portigal. Syst Appl Microbiol 12, 310-315. https://doi.org/10.1016/S0723-2020(89)80079-7
  19. Sekhon, A., Dahiya, N., Tiwari, R. P. and Hoondal, G. S. 2005. Properties of a thermostable extracellular lipase from Bacillus megaterium AKG-1. J Basic Microbiol 45, 147-154. https://doi.org/10.1002/jobm.200410498
  20. Sharma, R., Chisti, Y. and Banerjee, U. C. 2001. Production, purification, characterization, and applications of lipases. Biotechnol Adv 19, 627-662. https://doi.org/10.1016/S0734-9750(01)00086-6
  21. Stuer, W., Jaeger, K. E. and Winkler, U. K. 1986. Purification of extracellular lipase from Pseudomonas aeruginosa. J Bacteriol 168, 1070-1074.
  22. Sugihara, A., Tani, T. and Tominaga, Y. 1991. Purification and characterization of a novel thermostable lipase from Bacillus sp. J Biochem 109, 211-215.