DOI QR코드

DOI QR Code

GABA 함량이 높은 청국장을 발효하는 균주의 분리 및 동정

Isolation and Identification of GABA-producing Microorganism from Chungkookjang

  • Mann, So-Yon (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Eun-Ah (Department of Food Science & Technology, Pusan National University) ;
  • Lee, Ga-Young (Department of Food Science & Technology, Pusan National University) ;
  • Kim, Ro-Ui (Department of Food Science & Technology, Pusan National University) ;
  • Hwang, Dae-Youn (Department of Biomaterial Science, Pusan National University) ;
  • Son, Hong-Joo (Department of Life Science & Environmental Biochemistry, Pusan National University) ;
  • Kim, Dong-Seob (Department of Food Science & Technology, Pusan National University)
  • 투고 : 2012.10.30
  • 심사 : 2013.01.03
  • 발행 : 2013.01.30

초록

전통적인 방법으로 제조된 청국장으로부터 우수한 발효 균주들을 분리하여 재래식으로 청국장을 제조하고, 제조된 청국장의 생리활성 물질인 GABA를 유지 및 보강하면서 품질을 향상시키기 위하여 청국장 발효능이 뛰어난 종균을 찾아 분리하였다. 분리된 균주들 가운데 GABA의 함량이 높은 청국장을 생산하는 MC 31을 실험균주로 선택하였고 API Kit와 16S rDNA sequence를 통하여 Bacillus subtilis MC 31로 명명하였다. B. subtilis MC 31의 최적배지와 온도, 시간을 찾아본 결과 LB 배지에서 $37^{\circ}C$, 24시간이 가장 높은 생육을 나타내었다. GABA 생산에 적합한 발효 온도와 시간을 조절하여 최적 조건을 찾아본 결과 B. subtilis MC 31는 $40^{\circ}C$에서 72시간에 가장 많은 GABA를 생산하였다.

To isolate GABA-producing microorganisms, 1,500 strains were isolated from different Chungkookjang samples and screened. From these strains, 20 were selected for further analyses based on a protease and slime-producing activity test. The MC 31 strain showed the highest GABA concentration in Chungkookjang and was used in this study. MC 31 was identified as Bacillus subtilis by an API 50CHB kit and 16S rDNA sequences analysis and named as B. subtilis MC 31. B. subtilis MC 31 showed exponential growth up to 12 hours at $37^{\circ}C$ in LB broth, and it reached a stationary phase after 24 to 36 hours of incubation. B. subtilis MC 31 showed maximum GABA content at 72 hours after incubation at $40^{\circ}C$.

키워드

참고문헌

  1. An, M. K., Ahn, J. B., Lee, S. H. and Lee, K. G. 2010. Analysis of ${\gamma}$-aminobutyric acid content in germinated pigmented rice. Food Sci Tech 42, 632-636.
  2. Byun, M. W., Son, J. H., Yook, H. S., Jo, C. and Kim, D. H. 2002. Effect of gamma irradiation on the physiological activity of Korean soybean fermented foods, Chungkookjang and Doenjang. Radiat Phys Chem 64, 245-248. https://doi.org/10.1016/S0969-806X(01)00492-3
  3. Eom, S. M. 2006. Changes in chemical constituents of soybeans during germination and quality characteristics of Chungkukjang prepared with germinated soybeans. M.S. dissertation, Sejong University, Seoul, Korea.
  4. Hong, J. Y., Choue, R. W., Baek, J. Y., Cho, H. J. and Song, Y. B. 1999. The study of correlation between serum vitamin K concentration and bone metabolism in postmenopausal women. Korean J Nutr 21, 287-295.
  5. Jeo, G., Lee, M. Y., Yoon, J. Y., Jang, S., Jung, M., Jeong, H. S. and Lee, J. 2010. Effects of heat treatment and selected medicinal plant extracts on GABA content after germination. J Korean Soc Food Sci Nutr 39, 154-158. https://doi.org/10.3746/jkfn.2010.39.1.154
  6. Joo, H. K. 1996. Studies on chemical composition of commercial Chungkukjang and flavor compounds of Chungkukjang by mugwort (Artimisia asiatica) or red pepper seed oil. Korea Soybean Digest 13, 44-56.
  7. Jo, S. J., Hong, C. O., Yang, S. Y., Choi, K. K., Kim, H. K., Yang, H and Lee, K. W. 2011. Changes in contents of ${\gamma}$-Aminobutyric Acid (GABA) and isoflavones in traditional korean Doenjang by ripening periods. J Korean Soc Food Sci Nutr 40, 557-564. https://doi.org/10.3746/jkfn.2011.40.4.557
  8. Jung, D. H. and Sim, S. K. 1994. Fermented soybean foods, pp. 3, Pond of intellect, Korea.
  9. Kang, M. J., Kim, J. I. and Kwon, T. W. 2003. Effect of Chungkukjang on blood glucose and lipid profile in neonatal streptozotocin induced diabetic rats. Food Sci Biotechnol 12, 544-547.
  10. Katagiri, M., Shimizu, S. 1989. ${\alpha}$-aminobutyric acid accumulation in bean sprouts (soybean, black gram, green gram) treated with carbon dioxide. Nippon Shokuhin Kagaku Kougaku Kaishi 36, 916-919.
  11. Kim, B. N. and Lee, S. Y. 1995. Nattokinase, ${\gamma}$-GTP, protease activity and sensory evaluation of natto added with spice. J Korean Soc Food Nutr 24, 228-233.
  12. Kim, J. U., Park, S. G. and Kim, J. H. 1999. Food technology. pp. 44. Munundang.
  13. Kim, S. H., Yang, J. L. and Song, Y. S. 1999. Physiological functions of Chungkukjang. Food Ind and Nutr 4, 40-46.
  14. Kim, W. K., Choi, K., Kim, Y. T., Park, H. H. and Lee, S. Y. 1996. Purification and characterization of fibrinolytic enzyme produced from Bacillus sp. strain CK 11-4 screened from Chungkook-Jang. Appl Environ Microbiol 62, 2482-2488.
  15. Kim, Y. T., Kim, W. K. and Oh, H. I. 1995. Screening and identification of the fibrinolytic bacterial strain from Chungkookjang. Korean J Appl Microbial Biotechnol 23, 1-5.
  16. Koh, H. J. 2001. A study on isolation, purification and characterization of phytase producing bacteria. M.S. dissertation, Yonsei University, Seoul, Korea.
  17. Kum, J. S., Choi, B. K., Lee, H. Y. and Park, J. D. 2004. Physicochemical properties of germinated brown rice. Korean J Food Preserv 11, 182-188.
  18. Lee, H. C. and Won, M. B. 1995. Mystery of Chungkookjang, Shinkwangpub, Korea.
  19. Lee, I. B., Choi, K. J., K. K., Chuag, K. W. and Kim, K. J. 1992. Tocopherols and fatty acids in plant seeds from Korea. J Korean Agric Chem Soc 35, 1-5.
  20. Lee, J. O., Ha, S. D., Kim, A. J., Yuh, C. S., Bang, I. S. and Park, S. H. Industrial application and physiogical functions of Chongkukjang. 2005. Food Sci Indu 38, 69-78.
  21. Lim, A. D. and Kim, K. S. 2009. Effects and utilization of GABA. Korean J Dairy Sci Technol 27, 45-51.
  22. Park, J. C., Yoo, J. H., Cha, J. Y., Kim, M. S and Cho, Y. S. 2004. Isolation, identification and optimal culture condition of Bacillus sp. FF-9 having antifungal on the turf grass pathogens caused by Rhizoctonia solani AGII-II. J Korean Soc Appl Biol Chem 47, 373-378.
  23. Pyo, Y. H. 2008. Effect of monascus-fermentation on the content of GABA and free amino acids in soybean. J Korean Soc Food Sci Nutr 37, 1208-1213. https://doi.org/10.3746/jkfn.2008.37.9.1208
  24. Sawai, Y., Konomi, K., Odaka, Y., Yoshitomi, H., Yamaguchi, Y., Miyama, D. and Takeuchi, A. 1999. Repeating treatment of anaerobic and aerobic incubation increases the amount of ${\alpha}$-aminobutyric acid in tea shoots. Nippon Shokuhin Kagaku Kogaku Kaishi 46, 462-466. https://doi.org/10.3136/nskkk.46.462
  25. Shon, M. Y., Seo, K. I,, Lee, S. W., Choi, S. H. and Sung, N. J. 2000. Biological activities of Chungkugjang prepared with black bean and changes in phytoestrogen content during fermentation. Korean J Food Sci Technol 32, 936-941.
  26. Wei, H., Wei, L., Frenkel, F., Brown, R. and Bames, S. 1993. Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 20, 1-12. https://doi.org/10.1080/01635589309514265
  27. Yoshikatsu, murooka. and Mitsuo, yamshita. 2008. Traditional healthful fermented products of Japan. J Ind Microbiol Biotechnol 35, 791-798. https://doi.org/10.1007/s10295-008-0362-5
  28. Xiao, L. Y. 2011. Identification of three strains isolated from Cheonggukjang and characteristics of their crude protease and amylase. M.S. dissertation, Konkuk University, Seoul, Korea.
  29. Zhang, G. and Bown, A. W. 1997. The rapid determination of ${\gamma}$-aminobutyric acid. Pytochemistry 44, 1007-1009. https://doi.org/10.1016/S0031-9422(96)00626-7

피인용 문헌

  1. Potential of a lactic acid bacterial starter culture with gamma-aminobutyric acid (GABA) activity for production of fermented sausage 2017, https://doi.org/10.1007/s10068-017-0161-8
  2. Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap vol.48, pp.3, 2016, https://doi.org/10.9721/KJFST.2016.48.3.214
  3. Characteristics of Chungkookjang Produced by Bacillus subtillus MC31 vol.23, pp.4, 2013, https://doi.org/10.5352/JLS.2013.23.4.560
  4. Characteristics of Chungkookjang that Enhance the Flavor and GABA Content in a Mixed Culture of Bacillus subtilis MC31 and Lactobacillus sakei 383 vol.24, pp.10, 2014, https://doi.org/10.5352/JLS.2014.24.10.1102
  5. Screening of Non-Biogenic-Amine-Producing Bacillus subtilis and Medium Optimization for Improving Biomass by the Response Surface Methodology vol.26, pp.5, 2016, https://doi.org/10.5352/JLS.2016.26.5.571
  6. Inhibition of Bacillus cereus in Cheonggukjang Fermented with Bacillus Starters with Antimicrobial Activities vol.45, pp.5, 2016, https://doi.org/10.3746/jkfn.2016.45.5.736