DOI QR코드

DOI QR Code

Growth Promotion of Lettuce by Biofertilizer, BIOACTIVE, Prepared from Bacillus subtilus HR-1019 and N-acetyl-thioproline

Bacillus subtilus HR-1019와 N-Acetyl-thioproline으로 제조한 미생물처리제, BIOACTIVE에 의한 상추의 생장 촉진

  • Lee, Yong-Suk (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Park, Dong-Ju (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Jae Hoon (Haerim Pharmetic LTD.) ;
  • Kim, Hyeong Seok (Haerim Pharmetic LTD.) ;
  • Chung, Soo Yeol (Department of Food and Baking Science, Dong-Ju University) ;
  • Choi, Yong-Lark (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University)
  • Received : 2012.12.13
  • Accepted : 2013.01.15
  • Published : 2013.01.30

Abstract

A biofertilizer, BIOACTIVE, was manufactured by N-acetyl-thioproline (ATCA) and mineral phosphate solubilizing bacteria. The growth promoting effect of the biofertilizer on lettuce was evaluated under three different pot conditions, and its stability was assessed in the field. According to the results of the pot experiments, plant growth was improved compared with that of control: 128%, 122%, and 153% for the leaf number, leaf length, and leaf mass, respectively. Applying the manufactured biofertilizer increased the concentration of phosphate: 118% and 132% in the cultivation soil and plant cells, respectively. These show that BIOACTIVE may have potential as an effective biofertilizer in agriculture.

L-Cysteine에서 유도된 아미노산인 ATCA와 불용성 인산 가용화능을 가진 균주를 이용하여 미생물처리제 BIOACTIVE를 제조하고 안정성을 확인 하였다. 제조한 미생물처리제를 미생물 비료로 적용하고자 3회 관주 처리한 다음 상추모종의 생장촉진 효과를 조사하는 실험을 수행하였다. 그 결과로 처리한 시험 구에서 상추의 생육은 엽수, 엽장 및 엽중에서 최대 128%, 122% 및 153% 정도로 증가하였다. 처리 간에는 기준량(1,000배 희석) 처리> 반 량(500배 희석) 처리> 배 량(2,000배 희석) 처리 순으로 나타났다. 공시 BIOACTIVE의 처리가 토양 중의 유효인산 및 식물체내의 인산함량을 최대 118% 및 132% 정도 증가 시키는 경향이었다. BIOACTIVE제제를 처리했을 때 N, P, K 3요소를 관행으로 처리와 비슷한 생육 효과가 있는 것으로 보아 복합비료의 사용량을 줄여, 재배가 충분히 가능하리라 생각되며, 상추의 생육 및 비해 조사를 한 결과 본 관주 처리에서는 생육장해 및 비해는 없었다.

Keywords

References

  1. Agasimani, C., Mudlagiriyappa, A. and Sreenivasa, M. N. 1994. Response of groundnut to phosphate solubilizing microorganisms. Groundnut News 6, 5-7.
  2. Dubey, S. K. and Billore, S. D. 1992. Phophate solubilizing microorganism (PSM) as inoculant their role in augmenting crop productivity India-A review. Crop Res Hisar 5, 11-19.
  3. Illmer, P. and Schinner, F. 1992. Solubilization of inorganic phosphates by microorganisms isolated from forest soils. Soil Biol Biochem 24, 389-395 https://doi.org/10.1016/0038-0717(92)90199-8
  4. Leach, A. M., Burden, D. L. and Hieftje, G. M. 1999. Radioilluminescense detecter for the flow injection determination of phosphorus as vanadomolydophosphoric acid. Anal Chem Acta 402, 267-274. https://doi.org/10.1016/S0003-2670(99)00536-X
  5. Lee, E. S. and Song, H. G. 2010. Plant growth promotion by purple nonsulfur Rhodopseudomonas faecalis strains. Korean J Microbiol 46, 157-161.
  6. Lee, K. H. and Song, H. G. 2007. Growth promotion of tomato seedlings by aplication of Bacillus sp. isolated from rhizosphere. Korean J Microbiol 43, 279-284.
  7. Leveau, J. H. J. and Lindow, S. E. 2005. Utilization of plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl Environ Microbiol 71, 2365-2371. https://doi.org/10.1128/AEM.71.5.2365-2371.2005
  8. Pattern, C. L. and Glick, B. R. 2002. Role of Pseudomonas putida indole-3-acetic acid in development of the host plant root system. Appl Environ Microbiol 68, 3795-3801. https://doi.org/10.1128/AEM.68.8.3795-3801.2002
  9. Kang, S. C. and Choi, M. C. 1999. Solid culture of phosphate - solubilizing fungus, Penicillium sp. PS-113. Korean J Appl Microbiol Biotechnol 27, 1-7.
  10. Son, H. J., Park, G. T., Cha, M. S. and Her, M. S. 2006. Solubilization of insoluble inorganic phosphate by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Biores Technol 97, 204-210. https://doi.org/10.1016/j.biortech.2005.02.021
  11. Song, O. R., Lee, S. J., Kim. S. H.., Chung, S. Y., Cha, I. H. and Choi, Y. L. 2001. Isolation and cultural characteristics phosphate solubilization bacterium, Aeromonas hydrophyla DA57. J Korean Soc Agric Chem Biotechnol 44, 257-261.
  12. Song, O. R., Lee, S. J., Lee, Y. S., Lee, S. C., Kim, K. K. and Choi, Y. L. 2008. Solubilization of insolubile inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Bra J Microbiol 39, 1-6. https://doi.org/10.1590/S1517-83822008000100001
  13. Stamford, N. P., Santo, P. R., Snatos, C. E. S., Freitas, A. D. S., Dias, S. H. L. and Lira, Jr. M. A. 2007. Argonomic effectiveness of biofertilizers with phosphate rock, sulfur and Acdithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Biores Technol 98, 1311-1318. https://doi.org/10.1016/j.biortech.2006.04.037
  14. Tiwari, V. N., Pathak, A. N. and Lehri, L. K. 1993. Rock phosphate-superphosphate in wheat in relation to inoculation with phosphate solubilizing organism and organic waste. Ind J Agr Res 27, 137-145.

Cited by

  1. Physiological changes and growth promotion induced in poplar seedlings by the plant growth-promoting rhizobacteria Bacillus subtilis JS vol.56, pp.4, 2018, https://doi.org/10.1007/s11099-018-0801-0