DOI QR코드

DOI QR Code

Effect of Black Garlic Extract on Cytokine Generation of Mouse Spleen Cells

흑마늘(Black garlic) 추출물이 마우스 비장세포의 Cytokine 생성에 미치는 영향

  • Seo, Min Jeong (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kang, Byoung Won (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Park, Jeong Uck (Medi-Farm Industrialization Research Center, Dong-A University) ;
  • Kim, Min Jeong (Department of Biotechnology, Dong-A University) ;
  • Lee, Hye Hyeon (Department of Biotechnology, Dong-A University) ;
  • Ryu, En Ju (Department of Cosmetology, Hanseo University) ;
  • Joo, Woo Hong (Department of Biology, Changwon National University) ;
  • Kim, Kwang Hyuk (Department of Microbiology, Kosin University College of Medicine) ;
  • Jeong, Yong Kee (Medi-Farm Industrialization Research Center, Dong-A University)
  • 서민정 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 강병원 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 박정욱 (동아대학교 Medi-Farm 산업화 연구사업단) ;
  • 김민정 (동아대학교 생명공학과) ;
  • 이혜현 (동아대학교 생명공학과) ;
  • 류은주 (한서대학교 피부미용학과) ;
  • 주우홍 (창원대학교 생물학과) ;
  • 김광혁 (고신대학교 의학과) ;
  • 정영기 (동아대학교 Medi-Farm 산업화 연구사업단)
  • Received : 2012.11.29
  • Accepted : 2012.12.18
  • Published : 2013.01.30

Abstract

The effect of black garlic extract on the activation of spleen cells from a C57BL6 mouse was investigated to examine immune activities of of fermented black garlic containing a variety of bioactive substances. xtract obtained from the concentration of commercial Namhae black garlic was used for the analysis of immune activities. Treatment with the extract increased the expression of interleukin-2 (IL-2) cytokine. The simultaneous administration of the extract plus lipopolysaccharide (LPS) increased the expression of IL-2, tumor necrosis factor (TNF)-${\alpha}$, and interferon (IFN)-${\gamma}$ compared with that of a control group. This result suggests that cellular immunity can be induced by macrophages, resulting in the expression of T lymphocytes and T helper type 1 (Th1) cells. In addition, treatment with the extract increased the late response of IL-6 cytokines, and the extract plus LPS augmented the expression of IL-4 and IL-6 compared with that of an LPS-treated group. Meanwhile, the extract plus LPS decreased the late response of IL-10, suggesting that humoral immunity can be activated by stimulating B lymphocytes, suppressing cellular immunity, and effectively modulating the conversion into humoral immune responses. These findings demonstrate that the black garlic extract activates Th1 and Th2 cells by stimulating T lymphocytes in mouse spleen cells and leads to immunomodulation by activating cellular and humoral immune responses of the immune system.

생리활성물질을 다량함유하고 있는 마늘의 발효산물인 흑마늘의 면역활성을 검증하기 위하여 C57BL6 마우스 비장세포를 이용하여 흑마늘이 비장세포의 활성화에 미치는 영향을 확인하였다. 흑마늘 추출물은 시판되는 남해 흑마늘 액기스를 농축하여 사용하였다. 그 결과 IL-2에서 흑마늘 추출물만 처리한 군에서 생성이 증가하였으며, LPS와 흑마늘 추출물을 함께 처리하였을 때 IL-2와 TNF-${\alpha}$, IFN-${\gamma}$의 생성이 LPS만 처리한 군보다 증가하여 대식세포나 T림프구의 발현에 의해 일어나는 세포성 매개 면역을 활성화를 유도하는 Th1 세포의 발현을 활성화 하였다. 그리고 IL-6는 흑마늘 추출물만 처리하였을 때 후기생성이 증가하였으며, LPS와 흑마늘 추출물을 함께 처리한 경우 LPS만 처리한 군보다 IL-4와 IL-6의 생성이 증가하였다. IL-10은 LPS와 흑마늘 추출물을 함께 처리하였을 때 후기 생성이 감소하였는데, 이는 B 림프구의 활성화에 따른 항체생성 면역을 활성화하며 Th1 세포로부터 유도되는 세포성 면역반응을 억제함으로서 항체유도 체액성 면역반응으로 전환을 효과적으로 조절하는 것을 확인하였다. 따라서 흑마늘 추출물은 마우스 비장세포에서 T 림프구의 활성화에 따른 Th1 세포와 Th2 세포가 활성화되어 면역계의 세포성 면역과 체액성 면역반응을 활성화하여 면역조절에 효과를 나타내는 것으로 사료된다.

Keywords

References

  1. Abbas, A. K., Lichtman, A. H. and Pober, J. S. 1998. Cellular and molecular immunology. pp. 229-330, 3rd eds., W. B. Saunders Company. Philadelphia, Pennsylvania.
  2. Abbas, A. K., Murphy, K. and Sher, A. 1996. Functional diversity of helper T lymphocytes. Nature 383, 787-793. https://doi.org/10.1038/383787a0
  3. Alder, J. K., Georgantas 3rd., R. W., Hildreth, R. L., Kaplan, I. M., Morisot, S. and Yu, X. 2008. Kruppel-like factor 4 is essential for inflammatory monocyte diffenentiation in vivo. J Immunol 180, 5645-5652. https://doi.org/10.4049/jimmunol.180.8.5645
  4. Ankri, S. and Mirelman, D. 1999. Antimicrobial properties of allicin from garlic. Microbes Infect 1, 125-129. https://doi.org/10.1016/S1286-4579(99)80003-3
  5. Asadullah, K., Sterry, W. and Volk, H. D. Interleukin-10 therapy - review of a new approach. Pharmacol Rev 55, 241-269.
  6. Bae, S. E., Cho, S. Y., Won, D. Y, Lee, S. H. and Park, H. J. 2012. A comparative study of the different analytical methods for analysis of S-allyl cysteine in black garlic by HPLC. LWT - Food Sci Technol 46, 532-535. https://doi.org/10.1016/j.lwt.2011.11.013
  7. Bakri, I. M. and Douglas, C. W. I. 2005. Inhibitory effect of garlic extract on oral bacteria. Arch Oral Biol 50, 645-651. https://doi.org/10.1016/j.archoralbio.2004.12.002
  8. Butt, M. S., Sultan, M.T., Butt, M. S. and Iqbal, J. 2009. Garlic: nature's protection against physiological threats. Crit Rev Food Sci Nutr 49, 538-551. https://doi.org/10.1080/10408390802145344
  9. Cho, S. J., Rhee, D. K. and Pyo, S. 2006. Allicin, a major component of garlic, inhibits apoptosis of macrophage in a depleted nutritional state. Nutrition 22, 1177-1184. https://doi.org/10.1016/j.nut.2006.08.011
  10. Clement, F., Pramod, S. N. and Venkatesh, Y. P. 2010. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int Immunopharmacol 10, 316-324. https://doi.org/10.1016/j.intimp.2009.12.002
  11. Clerici, M. and Shearer, G. M. 1994. The Th1-Th2 hypothesis of HIV infection: new insights. Immunol Today 15, 575-581. https://doi.org/10.1016/0167-5699(94)90220-8
  12. Colic, M., Vucevic, D., Kilibarda, V., Radicevic, N., Savic, M. 2002. Modulatory effects of garlic extracts on proliferation of T-lymphocytes in vitro stimulated with concanavalin A. Phytomedicine 9, 117-124. https://doi.org/10.1078/0944-7113-00093
  13. Dissing-Olesen, L., Ladeby, R., Nielsen, H. H., Toft-Hansen, H., Dalmau, I. and Fisen, B. 2007. Axoral lesion-induced microglial proliferation and microglial cluster formation in the mouse. Neuroscience 149, 112-122. https://doi.org/10.1016/j.neuroscience.2007.06.037
  14. Elenkov, I. J. and Chrousos, G. P. 1999. Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrin Met 10, 359-368. https://doi.org/10.1016/S1043-2760(99)00188-5
  15. Hirano, T., Yasukawa, K., Harada, H., Taga, T., Watanabe, Y., Matsuda, T., Kashiwamura, S., Nakajima, K., Koyama, K., Iwamatsu, A. Tsunasawa, S., Sakiyama, F., Matusi, H., Takahara, Y., Taniguchi, T. and Kishimoto, T. 1986. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324, 73-76. https://doi.org/10.1038/324073a0
  16. Kang, N. S., Moon, E. Y., Cho, C. G. and Pyo, S. 2001. Immunomodulating effect of garlic component, allicin, on murine peritoneal macrophages. Nutr Res 21, 617-626. https://doi.org/10.1016/S0271-5317(01)00269-X
  17. Kim, S. H. 2001. Cytokines in chronic hepatitis B and C virus infection. Korean J Clin Pathol 21, 6-12.
  18. Kim, S. H., Jung, E. Y., Kang, D. H., Chang, U. J., Hong, Y. H. and Suh, H. J. 2012. Physical stability, antioxidative properties, and photoprotective effects of a functionalized formulation containing black garlic extract. J Photochem Photobiol B 117, 104-110. https://doi.org/10.1016/j.jphotobiol.2012.08.013
  19. Kyo, E., Uda, N., Suzuki, A., Kakimoto, M., Ushijima, M., Kasuga, S. and Itakura, Y. 1998. Immunomodulation and antitumor activities of Aged Garlic Extract. Phytomedicine 5, 259-267. https://doi.org/10.1016/S0944-7113(98)80064-0
  20. Lawson, L. D. 1998. Garlic: a review of its medicinal effects and indicated active compounds. Phytomedicines of Europe: Chemistry and Biological Activity, ACS Symposium Series, 691. American Chemical Society, Washington, D.C., pp. 176-209.
  21. Li, X. H., Li, C. Y., Lu, J. M., Tian, R. B. and Wei, J. 2012. Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf 2 antioxidant signaling pathways. Neurosci Lett 514, 46-50. https://doi.org/10.1016/j.neulet.2012.02.054
  22. Liu, Y., Qi, H., Wang, Y., Wu, M., Cao, Y., Huang, W., Li, L., Ji, Z. and Sun, H. 2012. Allicin protects against myocardial apoptosis and fibrosis in streptozotocin-induced diabetic rats. Phytomedicine 19, 693-698. https://doi.org/10.1016/j.phymed.2012.04.007
  23. Makris, A., Thornton, C. E., Xu, B. and Hennessy, A. 2006. Garlic increases IL-10 and inhibits TNF-alpha and IL-6 production in endotoxin-stimulated human placental explants. Placenta 26, 828-834.
  24. Montaño, A., Casado, F. J., de Castro, A., Sánchez, A. H. and Rejano, L. 2004. Vitamin content and amino acid composition of pickled garlic processed with and without fermentation. J Agric Food Chem 52, 7324-7430. https://doi.org/10.1021/jf040210l
  25. Mosmann, T. R., Cherwinski, H., Bond, M. W., Giedlin, M. A. and Coffman, R. L. 2005. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 175, 5-14.
  26. Nagatoshi, I., Benjamin, H. S., Kenjiro, R., Hiromichi, M. and Yoichi, I. 1999. Antioxiant effects of fructosyl, arginie, a Marillard reaction product in aged garlic extract. J Nutr Biochem 10, 373-376.
  27. Pedraza-Chaverri, J., Medina-Campos, O. N., Avila-Lombardo, R., Berenice Zuniga-Bustos, A. and Orozco-Ibarra, M. 2006. Reactive oxygen species scavenging capacity of different cooked garlic preparations. Life Sci 78, 761-770. https://doi.org/10.1016/j.lfs.2005.05.075
  28. Rengarajan, J., Szabo, S. J. and Glimcher, L. H. 2000. Transcriptional regulation of Th1/Th2 polarization. Immunol Today 21, 479-483. https://doi.org/10.1016/S0167-5699(00)01712-6
  29. Rose, P., Whiteman, M., Moore, P. K. and Zhu, Y. Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: the chemistry of potential therapeutic agents. Nat. Prod. Rep. 22, 51-68.
  30. Wang, D., Feng, Y., Jiu, J., Yan, J., Wang, M., Sasaki, J. I. and Lu, C. 2010. Black Garlic (Allium sativum) Extracts Enhance the Immune System. Med Aro Plant Sci Biotech 4, 37-40.
  31. You, B. R., Kim, H. R., Kim, M. J. and Kim, M R. 2011. Comparison of the quality characteristics and antioxidant activities of the commercial black garlic and lab-prepared fermented and aged black garlic. J Korean Soc Food Nutr 40, 366-371. https://doi.org/10.3746/jkfn.2011.40.3.366

Cited by

  1. Immuno-stimulating Activities of Skipjack Tuna Katsuwonus pelamis Cooking Juice Concentrates on Mouse Macrophages and Spleen Cells vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0776
  2. Immunostimulatory and Antioxidant Activities of Steamed Garlic Grown in Different Countries vol.31, pp.2, 2016, https://doi.org/10.13103/JFHS.2016.31.2.126
  3. Quality and Sensory Characteristics of Fermented Milk Adding Black Carrot Extracts Fermented with Aspergillus oryzae vol.30, pp.3, 2015, https://doi.org/10.7318/KJFC/2015.30.3.370
  4. Antioxidative Capacity and Quality Characteristics of Yanggaeng with Fermented Aged Black Giant Garlic (Allium ampeloprasum L. var. ampeloprasum auct.) Paste vol.27, pp.6, 2014, https://doi.org/10.9799/ksfan.2014.27.6.1014
  5. Anti-inflammatory Activities of Fermented Black Garlic vol.43, pp.10, 2014, https://doi.org/10.3746/jkfn.2014.43.10.1527
  6. Quality characteristics of vinegar fermented with different amounts of black garlic and alcohol vol.23, pp.1, 2016, https://doi.org/10.11002/kjfp.2016.23.1.34
  7. The quality and sensory characteristics of tofu with various levels of black garlic extract vol.21, pp.5, 2014, https://doi.org/10.11002/kjfp.2014.21.5.688