DOI QR코드

DOI QR Code

애기장대의 염해 저항성 관련 유전자의 기능적 선별

Functional Screening of Plant Genes Suppressed Salt Sensitive Phenotype of Calcineurin Deficient Mutant through Yeast Complementation Analysis

  • 문석준 (농촌진흥청, 국립농업과학원 생물자원부 분자육종과) ;
  • 박수권 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과) ;
  • 황운하 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과) ;
  • 이종희 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과) ;
  • 한상익 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과) ;
  • 남민희 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과) ;
  • 박동수 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과) ;
  • 신동진 (농촌진흥청, 국립식량과학원 기능성작물부 신소재개발과)
  • Moon, Seok-Jun (Bio-crop Development Division, National Academy of Agricultural Science, RDA) ;
  • Park, Soo-Kwon (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA) ;
  • Hwang, Un-Ha (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA) ;
  • Lee, Jong-Hee (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA) ;
  • Han, Sang-Ik (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA) ;
  • Nam, Min-Hee (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA) ;
  • Park, Dong-Soo (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA) ;
  • Shin, Dongjin (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
  • 투고 : 2012.08.17
  • 심사 : 2013.01.04
  • 발행 : 2013.01.30

초록

작물의 생산성 증가를 위해 염해 저항성 메커니즘을 이해하는 것이 중요하다. 식물의 염해 저항성에 관련된 유전자를 확보하기 위한 여러 가지의 선별방법이 개발되었다. 본 논문에서는 애기장대의 cDNA 라이브리를 염해감수성 효모인 cnb 돌연변이체에 삽입하여 염해 감수성 표현형을 회복하는 콜로니를 선발하였다. 이 선별방법을 통하여 34종의 cnb 돌연변이체의 염해 감수성을 회복하는 콜로니를 선별하였으며, 염기서열분석을 통하여 CaS와 AtSUMO1, AtHB-12 등 9종의 유전자임을 확인하였다. 이들 유전자 중 CaS의 발현이 염해 저항성을 증가시키는 것과 염해 처리에 의해 CaS의 유전자의 발현이 증가되는 것을 확인하였다. CaS 발현억제 형질전환체는 100 mM 염처리에 의하여 뿌리생장이 저해되었다. 또한 150 mM 염처리에 의하여 CaS 발현억제 형질전환체의 잎에서 백화현상을 나타내었다. 이러한 결과를 통하여 CaS 유전자가 효모와 식물에서 염해 저항성에 중요한 유전자임을 증명하였다.

Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA library into a salt-sensitive calcineurin (CaN)-deficient ($cnb{\Delta}$) yeast mutant and isolated the colonies which can suppress salt-sensitive phenotype of $cnb{\Delta}$ mutant. Through this functional complementation screen, a total of 34 colonies functionally suppressed the salt-sensitive phenotype of $cnb{\Delta}$ yeast cells, and sequencing analysis revealed that these are 9 genes, including CaS, AtSUMO1 and AtHB-12. Among these genes, the ectopic expression of CaS gene increased salt tolerance in yeast, and CaS transcript was up-regulated under high salinity conditions. CaS-antisense transgenic plants showed reduced root elongation under 100 mM NaCl treatment compared to the wild type plant, which survived under 150 mM NaCl treatment, whereas CaS-antisense transgenic plant leaves turned yellow under 150 mM NaCl treatment. These results indicate that the expression of CaS gene is important for stress tolerance in yeast and plants.

키워드

참고문헌

  1. Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H., Zhang, X. and Chua, N. H. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966. https://doi.org/10.1105/tpc.106.049981
  2. Conti, L., Price, G., O'Donnell, E., Schwessinger, B., Dominy, P. and Sadanandom, A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell 20, 2894-2908. https://doi.org/10.1105/tpc.108.058669
  3. Espelund, M., Saeboe-Larssen, S., Hughes, D. W., Galau, G. A., Larsen, F. and Jakobsen, K. S. 1992. Late embryogenesis- abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2, 241-252.
  4. Forment, J., Naranjo, M. A., Roldan, M., Serrano, R. and Vicente, O. 2002. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30, 511-519. https://doi.org/10.1046/j.1365-313X.2002.01311.x
  5. Forsburg, S. L. 2001. The art and design of genetic screens: yeast. Nat Rev Genet 2, 659-668.
  6. Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. 2004. Self-reporting Arabidopsis expressing pH and [$Ca^{2+}$] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134, 898-908. https://doi.org/10.1104/pp.103.032508
  7. Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K. A., Grill, E., Romeis, T. and Hedrich, R. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107, 8023-8028. https://doi.org/10.1073/pnas.0912030107
  8. Godoy, J. A., Pardo, J. M. and Pintor-Toro, J. A. 1990. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol 15, 695-705. https://doi.org/10.1007/BF00016120
  9. Han, S., Tang, R., Anderson, L. K., Woerner, T. E. and Pei, Z. M. 2003. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature 425, 196-200. https://doi.org/10.1038/nature01932
  10. Lippuner, V., Cyert, M. S. and Gasser, C. S. 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271, 12859-12866. https://doi.org/10.1074/jbc.271.22.12859
  11. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. https://doi.org/10.1105/tpc.10.8.1391
  12. Liu, Y., Chakrabortee, S., Li, R., Zheng, Y. and Tunnacliffe, A. 2011. Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation. FEBS Lett 585, 630-634. https://doi.org/10.1016/j.febslet.2011.01.020
  13. Lois, L. M., Lima, C. D. and Chua, N. H. 2003. Small ubiquitin- like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359. https://doi.org/10.1105/tpc.009902
  14. Mendoza, I., Quintero, F. J., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 1996. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 271, 23061-23067. https://doi.org/10.1074/jbc.271.38.23061
  15. Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  16. Nagaoka, S. and Takano, T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54, 2231-2237. https://doi.org/10.1093/jxb/erg241
  17. Naranjo, M. A., Forment, J., Roldan, M., Serrano, R. and Vicente, O. 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29, 1890-1900. https://doi.org/10.1111/j.1365-3040.2006.01565.x
  18. Pouchkina-Stantcheva, N. N., McGee, B. M., Boschetti, C., Tolleter, D., Chakrabortee, S., Popova, A. V., Meersman, F., Macherel, D., Hincha, D. K. and Tunnacliffe, A. 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318, 268-271. https://doi.org/10.1126/science.1144363
  19. Raghavendra, A. S., Gonugunta, V. K., Christmann, A. and Grill, E. 2010. ABA perception and signalling. Trends Plant Sci 15, 395-401. https://doi.org/10.1016/j.tplants.2010.04.006
  20. Reddy, A. S., Ali, G. S., Celesnik, H. and Day, I. S. 2011. Coping with stresses: roles of calcium- and calcium/calmodulin- regulated gene expression. Plant Cell 23, 2010-2032. https://doi.org/10.1105/tpc.111.084988
  21. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2004. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136, 2734-2746. https://doi.org/10.1104/pp.104.046599
  22. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31, 279-292. https://doi.org/10.1046/j.1365-313X.2002.01359.x
  23. Serrano, R. and Rodriguez-Navarro, A. 2001. Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13, 399-404. https://doi.org/10.1016/S0955-0674(00)00227-1
  24. Shi, H., Quintero, F. J., Pardo, J. M. and Zhu, J. K. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14, 465-477. https://doi.org/10.1105/tpc.010371
  25. Shin, D., Koo, Y. D., Lee, J., Lee, H. J., Baek, D., Lee, S., Cheon, C. I., Kwak, S. S., Lee, S. Y. and Yun, D. J. 2004. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323, 534-540. https://doi.org/10.1016/j.bbrc.2004.08.127
  26. Staxen, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M. and McAinsh, M. R. 1999. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96, 1779-1784. https://doi.org/10.1073/pnas.96.4.1779
  27. Tang, R. H., Han, S., Zheng, H., Cook, C. W., Choi, C. S., Woerner, T. E., Jackson, R. B. and Pei, Z. M. 2007. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315, 1423-1426. https://doi.org/10.1126/science.1134457
  28. Tracy, F. E., Gilliham, M., Dodd, A. N., Webb, A. A. and Tester, M. 2008. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31, 1063-1073. https://doi.org/10.1111/j.1365-3040.2008.01817.x
  29. Wu, S. J., Ding, L. and Zhu, J. K. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627. https://doi.org/10.1105/tpc.8.4.617
  30. Yamaguchi-Shinozaki, K. and Shinozaki, K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236, 331-340. https://doi.org/10.1007/BF00277130
  31. Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. https://doi.org/10.1105/tpc.6.2.251
  32. Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30, 529-539. https://doi.org/10.1046/j.1365-313X.2002.01309.x
  33. Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., Chen, C., Ma, L., Wang, J., Xiong, L., Zhang, Q., Fan, L. and Deng, X. W. 2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63, 591-608. https://doi.org/10.1007/s11103-006-9111-1