References
- Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H., Zhang, X. and Chua, N. H. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966. https://doi.org/10.1105/tpc.106.049981
- Conti, L., Price, G., O'Donnell, E., Schwessinger, B., Dominy, P. and Sadanandom, A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell 20, 2894-2908. https://doi.org/10.1105/tpc.108.058669
- Espelund, M., Saeboe-Larssen, S., Hughes, D. W., Galau, G. A., Larsen, F. and Jakobsen, K. S. 1992. Late embryogenesis- abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2, 241-252.
- Forment, J., Naranjo, M. A., Roldan, M., Serrano, R. and Vicente, O. 2002. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30, 511-519. https://doi.org/10.1046/j.1365-313X.2002.01311.x
- Forsburg, S. L. 2001. The art and design of genetic screens: yeast. Nat Rev Genet 2, 659-668.
-
Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. 2004. Self-reporting Arabidopsis expressing pH and [
$Ca^{2+}$ ] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134, 898-908. https://doi.org/10.1104/pp.103.032508 - Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K. A., Grill, E., Romeis, T. and Hedrich, R. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107, 8023-8028. https://doi.org/10.1073/pnas.0912030107
- Godoy, J. A., Pardo, J. M. and Pintor-Toro, J. A. 1990. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol 15, 695-705. https://doi.org/10.1007/BF00016120
- Han, S., Tang, R., Anderson, L. K., Woerner, T. E. and Pei, Z. M. 2003. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature 425, 196-200. https://doi.org/10.1038/nature01932
- Lippuner, V., Cyert, M. S. and Gasser, C. S. 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271, 12859-12866. https://doi.org/10.1074/jbc.271.22.12859
- Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406. https://doi.org/10.1105/tpc.10.8.1391
- Liu, Y., Chakrabortee, S., Li, R., Zheng, Y. and Tunnacliffe, A. 2011. Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation. FEBS Lett 585, 630-634. https://doi.org/10.1016/j.febslet.2011.01.020
- Lois, L. M., Lima, C. D. and Chua, N. H. 2003. Small ubiquitin- like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359. https://doi.org/10.1105/tpc.009902
- Mendoza, I., Quintero, F. J., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 1996. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 271, 23061-23067. https://doi.org/10.1074/jbc.271.38.23061
- Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
- Nagaoka, S. and Takano, T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54, 2231-2237. https://doi.org/10.1093/jxb/erg241
- Naranjo, M. A., Forment, J., Roldan, M., Serrano, R. and Vicente, O. 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29, 1890-1900. https://doi.org/10.1111/j.1365-3040.2006.01565.x
- Pouchkina-Stantcheva, N. N., McGee, B. M., Boschetti, C., Tolleter, D., Chakrabortee, S., Popova, A. V., Meersman, F., Macherel, D., Hincha, D. K. and Tunnacliffe, A. 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318, 268-271. https://doi.org/10.1126/science.1144363
- Raghavendra, A. S., Gonugunta, V. K., Christmann, A. and Grill, E. 2010. ABA perception and signalling. Trends Plant Sci 15, 395-401. https://doi.org/10.1016/j.tplants.2010.04.006
- Reddy, A. S., Ali, G. S., Celesnik, H. and Day, I. S. 2011. Coping with stresses: roles of calcium- and calcium/calmodulin- regulated gene expression. Plant Cell 23, 2010-2032. https://doi.org/10.1105/tpc.111.084988
- Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2004. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136, 2734-2746. https://doi.org/10.1104/pp.104.046599
- Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31, 279-292. https://doi.org/10.1046/j.1365-313X.2002.01359.x
- Serrano, R. and Rodriguez-Navarro, A. 2001. Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13, 399-404. https://doi.org/10.1016/S0955-0674(00)00227-1
- Shi, H., Quintero, F. J., Pardo, J. M. and Zhu, J. K. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14, 465-477. https://doi.org/10.1105/tpc.010371
- Shin, D., Koo, Y. D., Lee, J., Lee, H. J., Baek, D., Lee, S., Cheon, C. I., Kwak, S. S., Lee, S. Y. and Yun, D. J. 2004. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323, 534-540. https://doi.org/10.1016/j.bbrc.2004.08.127
- Staxen, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M. and McAinsh, M. R. 1999. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96, 1779-1784. https://doi.org/10.1073/pnas.96.4.1779
- Tang, R. H., Han, S., Zheng, H., Cook, C. W., Choi, C. S., Woerner, T. E., Jackson, R. B. and Pei, Z. M. 2007. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315, 1423-1426. https://doi.org/10.1126/science.1134457
- Tracy, F. E., Gilliham, M., Dodd, A. N., Webb, A. A. and Tester, M. 2008. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31, 1063-1073. https://doi.org/10.1111/j.1365-3040.2008.01817.x
- Wu, S. J., Ding, L. and Zhu, J. K. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627. https://doi.org/10.1105/tpc.8.4.617
- Yamaguchi-Shinozaki, K. and Shinozaki, K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236, 331-340. https://doi.org/10.1007/BF00277130
- Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264. https://doi.org/10.1105/tpc.6.2.251
- Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30, 529-539. https://doi.org/10.1046/j.1365-313X.2002.01309.x
- Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., Chen, C., Ma, L., Wang, J., Xiong, L., Zhang, Q., Fan, L. and Deng, X. W. 2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63, 591-608. https://doi.org/10.1007/s11103-006-9111-1