DOI QR코드

DOI QR Code

반복하중을 받는 볼트 연결부에 대한 역학적인 고등해석 모델의 개발

Development of Advanced Mechanical Analysis Models for the Bolted Connectors under Cyclic Loads

  • 투고 : 2012.10.04
  • 심사 : 2012.11.09
  • 발행 : 2013.02.04

초록

반복적인 하중을 받는 볼트 연결부의 비선형적인 거동을 예측할 수 있는 역학적 고등해석 모델을 개발하는 데 주된 초점을 두어 본 연구를 수행하였다. 또한 대표적인 접합부 형태인 T-stub 접합부의 연결 컴포넌트에 대한 실제의 하중 재하 실험값을 활용한 해석으로 얻어진 거동에 대한 예측의 정확성 및 모형화의 타당성을 입증하였다. 연결부를 이루고 있는 구성요소들의 거동은 볼트의 인장변형, T-stub 플랜지의 휨변형, T-stub 몸체의 신장, 전단볼트의 지압 및 미끄러짐을 포함하며 접합부내에서 개별적인 힘-변위 메커니즘으로부터 정의된 다중 선형의 강성모델에 의하여 재현된다. 이러한 구성요소들은 그들의 거동특성을 지닌 비선형 스프링으로 모형화되어 역학적 해석 모델에 설치되어 연결부 전체의 거동을 수치해석적인 방법으로 예측하도록 한다. 해석 모델에 의한 예측값은 강성, 강도 및 변형 측면에서 실험값과 비교하여 정확성을 평가하였으며 이를 근거로 본 연구에서 제안된 역학적 해석 모델이 볼트 연결부의 거동과 성능을 만족하며 예측 가능하다는 결론을 내렸다.

This paper intends to develop mechanical analysis models that are able to predict complete nonlinear behavior in the bolted connector subjected to cyclic loads. In addition, experimental data which were obtained from loading tests performed on the T-stub connections are utilized to validate the accuracy of analytical prediction and the adequacy of numerical modeling. The behavior of connection components including tension bolt uplift, bending of the T-stub flange, stem elongation, relative slip deformation, and bolt bearing are simulated by the multi-linear stiffness models obtained from the observation of their individual force-deformation mechanisms in the connection. The component springs, which involve the stiffness properties, are implemented into the simplified joint element in order to numerically generate the behavior of full-scale connections with considerable accuracy. The analytical model predictions are evaluated against the experimental tests in terms of stiffness, strength, and deformation. Finally, it can be concluded that the mechanical models proposed in this study have the satisfactory potential to estimate stiffness response and strength capacity at failure.

키워드

참고문헌

  1. American Institute of Steel Construction (AISC, 2001) Manual of steel construction: Load and Resistance Factor Design (LRFD), 3rd edition, Chicago (IL).
  2. Clemente, I., Noe, S., Rassati, G. A. (2004) Experimental behavior of T-stub connection components for the mechanical modeling of bare steel and composite partially-restrained beam- to-column connections, Connections in Steel Structures V, Amsterdam, June 3-4.
  3. Committee European Normalization (CEN) Eurocode 3 (2003): Design of steel structures - Part 1.8: Design of joints (PREN 1993-1-8:2003), Stage 49 Draft, Brussels.
  4. Faella, C., Piluso, V., Rizzano, G. (2000) Structural steel semi- rigid connections-Theory, design and software, Boca Raton (FL), CRC Press.
  5. Green, T. P., Leon, R. T., Rassati, G. A. (2004) Bidirectional tests on partially restrained, composite beam-column connections, Journal of Structural Engineering ASCE, Vol. 130, No. 2, pp. 320-327. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(320)
  6. Hu, J. W., Leon, R. T., Park T. (2010), Analytical investigation on ultimate behaviors for steel heavy clip-angle connections using FE analysis, ISIJ International, Vol. 50, No. 6, pp. 883-892. https://doi.org/10.2355/isijinternational.50.883
  7. Kim, Y. J., Shin, K. J., Kim, W. J. (2008) Effect of stiffener details on behavior of CFT column-to-beam connection, International Journal of Steel Structures KSSC, Vol. 8, pp. 119-133.
  8. Kulak, G. L., Fisher, J. W., Struik, J. H. A. (1987) Guide to design criteria for bolted and riveted joint, 2nd edition, Johns Wiley & Sons.
  9. Leon, R. T., Hajjar, J. F., Gustafson, M. A. (1998) Seismic response of composite moment-resisting connections I: Performance, Journal of Structural Engineering ASCE, Vol. 124, No. 8, pp. 868-876. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:8(868)
  10. Leon, R. T. (1997) Seismic performance of bolted and riveted connections. Background reports: metallugy, fracture mechanics, welding, moment connections, and frame system behavior, FEMA publication No. 288, Federal Emergency Management Association (FEMA), Washington (DC), March.
  11. Mazzoni, S., Mckenna, F., Fenves, G. L. (2006) OpenSEES command language manual v. 1.7.3, Department of Civil Environmental Engineering, University of California, Berkley (CA).
  12. Pucinotti, R. (2001) Top-and-seat and web angle connections: Prediction via mechanical model, Journal of Constructional Steel Research, Vol. 57, No. 6, pp. 661-694.
  13. Rassati, G. A., Leon, R. T., Noe, S. (2004) Component modeling of partially restrained composite joints under cyclic and dynamic loading, Journal of Structural Engineering ASCE, Vol. 130, No. 2, pp. 343-351. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(343)
  14. Rex, C. O., Easterling, W. S. (1996) Behavior and modeling of a single plate bearing on a single bolt, Report No. CE/VPI-ST 96/14, Virginia Polytechnic Institute and State University, Blacksburg (VA).
  15. Swanson, J. A. (1999) Characterization of the strength, stiffness, and ductility behavior of T-stun connection, Ph.D. Dissertation, Georgia Institute of Technology, Atlanta (GA).
  16. Swanson, J. A. (2002) Ultimate strength prying models for bolted T-stub connections, Engineering Journal AISC, pp.136-147.
  17. Whitmore, R. E. (1952) Experimental investigation of stresses in gusset plates, University of Tennessee Engineering Experiment Station, Bulletin. No.16, Ma