DOI QR코드

DOI QR Code

Ejector Optimization for SOFC Anode Off-Gas Recirculation System

SOFC 산화전극 배기가스 순환 시스템을 위한 이젝터 최적 설계

  • Received : 2012.06.12
  • Accepted : 2012.10.16
  • Published : 2013.02.01

Abstract

In this study, an ejector was designed to recirculate the anodic off-gas of SOFC, and a parametric study of the system performance was conducted at various ejector entrainment ratios. Aspen Plus, a chemical engineering program, was used to calculate the operational conditions of the ejector. To minimize the calculation load of the CFD and to ensure the global optimum, a genetic algorithm and Kriging model were used for the optimization. The optimization results showed that the dominant design variables of the sonic ejector are the throat diameter and the first flow nozzle position. The designed ejector has enough flexibility for different operating conditions of a 1-kW SOFC system. When the ejector was applied to the SOFC, it reduced 56% of the steam and 8.4% of the fuel compared to the reference case.

본 연구에서는 1kW 급 SOFC 시스템의 AOGR(anode off-gas recirculation)을 위한 이젝터를 설계하고 이젝터 적용시의 시스템 효율을 매개변수 연구를 통해 알아보았다. 화공해석 프로그램를 이용하여 이젝터의 작동 조건을 계산하였고, 전역 최적값을 보장하면서도 CFD 계산에 따른 부하를 최소화하기 위하여 유전 알고리듬과 크리깅 모델을 이용하여 최적화를 진행하였다. 최적화를 통해 음속 이젝터에서 가장 큰 영향을 미치는 설계 변수가 이젝터의 목직경과 1 차 노즐의 위치임을 식별하였다. 유동변수에 대한 매개변수 연구를 통해 설계된 이젝터는 1kW 급 SOFC 의 다양한 작동 조건에서 충분한 유연성을 가지며, SOFC 에 적용시 증기의 56% 와 연료의 8.4% 절감이 가능함을 보였다.

Keywords

References

  1. James, L. and Andrew, D., 2003, "Fuel Cell Systems Explained," Wiley, pp. 209-286.
  2. Sriveerakul, T., Aphornratana, S. and Chunnanord, K., 2007, "Performance Prediction of Steam Ejector Using Computational Fluid Dynamics:Part1.Validation of the CFD Results," International Journal of Thermal Sciences, Vol. 46, pp. 812-822. https://doi.org/10.1016/j.ijthermalsci.2006.10.014
  3. Alsayed, A. M., Elbanna, H. M. and Abdelrahmam, M. M., 2010, "Design Optimization of Thrust Augmentation Ejector Utilizing the CFD Tools," Proceedings of ICFD10.
  4. Marsano, F., Magistri, L. and Massardo, A.F., 2004, "Ejector Performance Influence on a Solid Oxide Fuel Cell Anodic Recirculation System," Journal of Power Sources, 129, pp. 216-228. https://doi.org/10.1016/j.jpowsour.2003.11.034
  5. Ferrari, M.L., Traverse, A., Magistri, L. and Massardo, A.F., 2005, "Influence of the Anodic Recirculation Transient Behavior on the SOFC Hybrid System Performance," Journal of power sources, Vol.149, pp. 22-32. https://doi.org/10.1016/j.jpowsour.2005.01.059
  6. Yinhai, Z., Wenjian, C., Chaugyun, W. and Yanzhong, L., 2007, "Fuel Ejector Design and Simulation Model for Anodic Recirculation SOFC System," Journal of Power Sources, Vol.173, pp. 437-449. https://doi.org/10.1016/j.jpowsour.2007.08.036
  7. Dushyant, S., David, B., Todd, G., Daniel, H. and James, S., 2007, "Effects of Fuel Cell Anode Recycle on Catalytic Fuel Reforming," Journal of Power sources, Vol168, pp. 477-483. https://doi.org/10.1016/j.jpowsour.2007.03.031
  8. Pianthong, K., Seehanam, W., Behnia, M., Sriveerakul, T. and Aphornratana, S., 2007, "Investigation and Improvement of Ejector Refrigeration System Using Computational Fluid Dynamics Technique," Energy Conversion and Management, Vol.48, Issue 9, pp. 2556-2564. https://doi.org/10.1016/j.enconman.2007.03.021
  9. Bartosiewic, Y., Aidoun, Z., Desevaux, P. and Mercadier, Y., 2005, "Numerical and Experimental Investigations on Supersonic Ejectors," Int journal of Heat fluid Flow, Vol. 26, pp. 56-70. https://doi.org/10.1016/j.ijheatfluidflow.2004.07.003
  10. Ashton, J., Green, J. and Reade, A., 1993, "Gas Production Improvements Using Ejectors," SPE paper 26684, Society of petroleum engineers.
  11. Somsak, W., 2005, "Optimization of a High- Efficiency Jet Ejector by Computational Fluid Dynamics Software," Thesis Submitted for Master Degree of Texas A&M university, pp. 150-165.
  12. Kanjanapon, C. and Satha, A., 2004, "Ejectors : Applications in Refrigeration Technology," Renewable and Sustainable Energy Reviews, Vol. 8, pp. 129-155. https://doi.org/10.1016/j.rser.2003.10.001
  13. ESDU, 1985, "Ejector and Jet Pump," Data Item 86030, London:ESDU international Ltd.
  14. Aphornratana, S. and Eames, I.W., 1997, "A Small Capacity Steam-Ejector Refregerator : Experimental Investigation of a System Using Ejector with Movable Primary Nozzle," Int J Refreg, 20(5), pp. 352-358. https://doi.org/10.1016/S0140-7007(97)00008-X
  15. Jeong, S., Obayashi, S. and Yamamoto, K., 2005, "Aerodynamic Optimization Design with Kriging Model," Transactions of the Japan society for Aeronautical and Space Sciences, Vol. 48, pp. 161-168. https://doi.org/10.2322/tjsass.48.161

Cited by

  1. High Temperature Micro-Fan for Solid Oxide Fuel Cell Applications vol.15, pp.4, 2015, https://doi.org/10.1002/fuce.201400164