DOI QR코드

DOI QR Code

Study of Optimum Operating Conditions of Thermal Acoustic Generator

열음향파 발생장치의 최적 작동 조건에 대한 실험적 연구

  • Shin, Sang Woong (Dept. of Nuclear & Energy Engineering, Jeju Nat'l Univ.) ;
  • Oh, Seung Jin (Dept. of Nuclear & Energy Engineering, Jeju Nat'l Univ.) ;
  • Lee, Yoon Joon (Dept. of Nuclear & Energy Engineering, Jeju Nat'l Univ.) ;
  • Kim, Nam Jin (Dept. of Nuclear & Energy Engineering, Jeju Nat'l Univ.) ;
  • Chun, Wongee (Dept. of Nuclear & Energy Engineering, Jeju Nat'l Univ.)
  • Received : 2012.06.07
  • Accepted : 2012.10.22
  • Published : 2013.02.01

Abstract

This study deals with the effects of major geometric parameters on the sound wave output of a thermal acoustic system. The output power of the acoustic wave was dependent on the stack position, stack length, resonator tube length, and input power. In experiments, the maximum SPL was generated when the stack was placed between one-fourth to half, resonator and stack length were longer, and input power was increased. The frequency was recorded to be 437 and 885 Hz when the resonator tube length was 200 and 100 mm, respectively. Therefore, when the resonator tube length was shorter, a higher frequency was recorded.

본 연구에서는 열음향 시스템의 음향파 출력에 대한 주요한 기하학적 변수에 대해 다루고 있다. 음향파의 출력은 스택의 위치와 스택의 길이, 입력 파워와 공진기의 길이에 의존한다. 본 실험을 통하여 최고의 실험 조건을 얻을 수 있었다. 실험결과에 의하면 최고 음압레벨은 폐쇄된 부분에서 공진기길이의 1/4 -1/2지점 사이에 스택을 위치시켰을 때, 공진기와 스택의 길이가 길 때, 그리고 입력전압이 증가할 때 나타난다. 또한 주파수의 경우 공진기의 길이가 200mm일 때 437Hz, 100mm일 때 885Hz를 기록하였다. 연구 결과 공진기의 길이가 짧을수록 더 높은 주파수를 얻을 수 있는 것을 알 수 있다.

Keywords

References

  1. Feldman, K.T., Jr., 1968, "A Study of Heat Generated Pressure Oscillations in a Closed End Pipe," Ph.D. Dissertation, Mechanical Engineering, University of Missouri.
  2. Feldman, K.T., Jr., 1968, "Review of the Literature on Sondhauss Thermoacoustic Phenomena," Journal of Sound and Vibration, Vol.7, No.1, pp. 71-82 https://doi.org/10.1016/0022-460X(68)90158-2
  3. Ijani, M.E.H., Zeegers, J.C.H. and de Waele, a. T. a. M., 2002, "The Optimal Stack Spacing for Thermoacoustic Refrigeration," The Journal of the Acoustical Society of America, Vol. 112, No. 1, p. 128. https://doi.org/10.1121/1.1487842
  4. Symko, O., 2004, "Design and Development of High-Frequency Thermoacoustic Engines for Thermal Management in Microelectronics," Microelectronics Journal, Vol.35, No.2, pp.185-191. https://doi.org/10.1016/j.mejo.2003.09.017
  5. Symko, O.G., 2006, "Acoustic approach to Thermal Management: Miniature Thermoacoustic Engines," Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems, pp.771-776, ITHERM 2006.
  6. Kim, Y.T. and Kim, M.G., 2000, "Optimum Positions of a Stack in a Thermoacoustic Heat Pump," Journal of the Korean Physical Society, Vol.36, No.5, pp. 279-286.
  7. Swift, G., 1988, "Thermoacoustic Engines.," The Journal of the Acoustical Society of America, Vol.84, No.4, pp. 1145-1180. https://doi.org/10.1121/1.396617
  8. Kwon, Y. S., 1996, "Study of Thermoacoustic Engines Operating at Frequencies between 2 KHz and 25 KHz," Ph.D. dissertation, Department of Physics, The University of Utah.