DOI QR코드

DOI QR Code

Design of a Multimode Piezoelectric Spherical Vector Sensor for a Cardioid Beam Pattern

심장형 빔 패턴을 위한 다중모드 압전 구형 벡터센서 설계

  • 임영섭 (경북대학교 센서 및 디스플레이공학과) ;
  • 이재영 (경북대학교 센서 및 디스플레이공학과) ;
  • 조치영 (국방과학연구소) ;
  • 서희선 (국방과학연구소) ;
  • 노용래 (경북대학교 기계공학과)
  • Received : 2012.09.14
  • Accepted : 2012.10.24
  • Published : 2013.01.31

Abstract

Typical underwater piezoelectric spherical sensors are omni-directional, thus can measure the scalar quantity sound-pressure-magnitude only with the limitation not being able to measure the direction of the incoming wave. This paper proposes a method to simultaneously measure both the magnitude and direction of the sound wave with the spherical sensor. The method divides the piezoceramic sphere of the sensor into eight elements, and distinguishes the magnitude and direction of the sound pressure by combining the output voltage of the elements in a particular manner. Further, through the analysis of the sensitivity variation in relation to the structural parameters like radius and thickness of the piezoceramic sphere, we have suggested the way to improve the sensitivity of the vector sensor.

일반적인 수중 탐지용 압전 구형 센서는 무지향성이어서 스칼라 양인 수신 음압의 크기만 측정할 뿐 전파 방향은 측정 할 수 없는 한계를 가지고 있다. 본 논문에서는 이러한 구형 센서를 이용해 음파의 크기와 방향을 동시에 찾을 수 있는 방법을 제안한다. 제안한 방법은 구형 센서의 압전 세라믹을 8등분하여 배열한 다음, 각 압전 세라믹 출력전압을 특정한 방법으로 조합하여 음압의 크기와 방향을 파악할 수 있도록 하였다. 또한 압전세라믹 구의 반경과 두께와 같은 구조 변수들의 변화에 따른 감도 변화를 분석하여, 벡터 센서의 감도를 향상 시킬 수 있는 방안을 제시하였다.

Keywords

References

  1. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007).
  2. J. H. Battocletti and T. A. Knox, "Spherical finite element analysis," IEEE Trans. Mag. 30, 5008-5014 (1994). https://doi.org/10.1109/20.334288
  3. J. T. Fielding, Jr., D. Smith, R. Meyer, Jr., S. Trolier-McKinstry, and R. E. Newnham, "Characterization of PZT hollow-sphere transducers," in Proc. Ninth IEEE International Symposium on Applications of Ferroelectrics, 202-205 (1995).
  4. S. Alkoy, A, Dogan, A. C. Hladky, P. Langlet, J. K. Cochran, and R. E. Newnham, "Miniature piezoelectric hollow sphere transducers (BBs)," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 44, 1067-1076 (1997). https://doi.org/10.1109/58.655632
  5. J. O. Kim, J. G. Lee, and H. Y. Chun, "Radial vibration characteristics of spherical piezoelectric transducers," Ultrasonics, 43, 531-537 (2005). https://doi.org/10.1016/j.ultras.2005.01.004
  6. H. C. Schau and A. Z. Robinson, "Passive source localization employing intersecting spherical surfaces from time-of-arrival differences," IEEE Trans. Acoust. Speech Signal Process. 35, 1223-1225 (1987).
  7. M. J. D. Rendas and J. M. F. Moura, "Cramer-rao bound for location system in multipath environments," IEEE Trans. Signal Process. 39, 2593-2610 (1991). https://doi.org/10.1109/78.107410
  8. A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, "Matched field processing: source localization in correlated noise as an optimum parameter estimation problem," J. Acoust. Soc. Am. 83, 571-587 (1988). https://doi.org/10.1121/1.396151
  9. S. L. Ehrlich, U. S. Patent No. 3, 732, 535 Spherical Acoustic Transducer, 1973.
  10. S. H. Ko, G. A. Brigham, and J. L. Butler, "Multimode spherical hydrophone," J. Acoust. Soc. Am. 56, 1890- 1898 (1974). https://doi.org/10.1121/1.1903528
  11. J. L. Butler and S. L. Ehrlich "Superdirective spherical radiator," J. Acoust. Soc. Am. 61, 1427-1431 (1977). https://doi.org/10.1121/1.381457
  12. S. H. Ko and H. L. Pond, "Improved design of spherical multimode hydrophone," J. Acoust. Soc. Am. 64, 1270-1277 (1978). https://doi.org/10.1121/1.382111
  13. A. L. Butler and J. L. Butler, "Multimode directional telesonar transducer," in Proc. IEEE OCEANS 2000 MTS Conference and Exhibition, 2, 1289-1292 (2000).
  14. A. L. Butler, J. L. Butler, and J. A. Rice, "A tri-modal directional transducer," J. Acoust. Soc. Am. 115, 658- 665 (2004). https://doi.org/10.1121/1.1639326
  15. O. B. Wilson, Introduction to Theory and design of sonar transducers (Peninsula Publishing, Los Altos, CA, 1988).

Cited by

  1. Direction-of-Arrival Estimation for the Ring-Type Multimode Vector Hydrophone based on the Pressure Gradient-Acceleration Relationship vol.34, pp.1, 2015, https://doi.org/10.7776/ASK.2015.34.1.066
  2. Analysis of a thickness-shear mode vibrator for the accelerometer in vector hydrophones vol.266, 2017, https://doi.org/10.1016/j.sna.2017.09.007