DOI QR코드

DOI QR Code

Histopathological Evaluation of Heart Toxicity of a Novel Selective PPAR-γ Agonists CKD-501 in db/db Mice

  • Yang, Hyun-Il (Department of Biomedical Laboratory Science, Namseoul University) ;
  • Kim, Woo Sik (Divison of Pharmacology & Toxicology, CKD Research Institute) ;
  • Kim, Dal-Hyun (Divison of Pharmacology & Toxicology, CKD Research Institute) ;
  • Kang, Jin Seok (Department of Biomedical Laboratory Science, Namseoul University)
  • Received : 2012.12.21
  • Accepted : 2013.01.11
  • Published : 2013.01.31

Abstract

High risk of cardiovascular diseases caused by existing PPAR-${\gamma}$ agonists such as rosiglitazone and pioglitazone has been recently reported. CKD-501 is a novel selective PPAR-${\gamma}$ agonist as a potential target to reduce cardiovascular risk in non-insulin dependent diabetes mellitus (NIDDM). In this study, We investigated potential cardiotoxicity of CKD-501 and compared its toxicity with that of rosiglitazone or pioglitazone using db/db mice. After 12-week repeated administration of CKD-501 at doses of 3, 10 and 30 mg/kg/day or rosiglitazone at doses of 10 and 30 mg/kg/day or pioglitazone at doses of 200 and 540 mg/kg/day, animals were sacrificed for investigation of potential toxicities. Diameters of left ventricles and areas of cardiomyocytes were measured. And lipid accumulation and apoptosis in heart muscle were examined by oil red O staining and TUNEL staining, respectively. Diameters of left ventricles were significantly increased in high dose treatment group of pioglitazone compared to control (p<0.05), while other groups showed a tendency for an increase. All test articles induced significantly the increase of area of cardiomyocytes in heart compared to control (p<0.01), in regular order as pioglitazone > CKD-501 ${\geq}$ rosiglitazone. However, lipid accumulation and apoptotic changes in heart were not observed in all dosing groups. Taken together, the myocardial cell hypertrophy of CKD-501 are relatively lower than that of pioglitazone and similar to rosiglitazone. And it is suggested that the myocardial cell hypertrophy of CKD-501 are less adverse in clinical use for the management of the NIDDM.

Keywords

References

  1. Breider, M. A., Gough, A. W., Haskins, J. R., Sobocinski, G. and de la Iglesia, F. A. (1999) Troglitazone-induced heart and adipose tissue cell proliferation in mice. Toxicol. Pathol. 27, 545-552. https://doi.org/10.1177/019262339902700508
  2. Cantello, B. C., Cawthorne, M. A., Cottam, G. P., Duff, P. T., Haigh, D., Hindley, R. M., Lister, C. A., Smith, S. A. and Thurlby, P. L. (1994) [[omega-(Heterocyclylamino)alkoxy]benzyl]-2,4-thiazolidinediones as potent antihyperglycemic agents. J. Med. Chem. 37, 3977-3985. https://doi.org/10.1021/jm00049a017
  3. Chen, W., Zhou, X. B., Liu, H. Y., Xu, C., Wang, L. L. and Li, S. (2009) P633H, a novel dual agonist at peroxisome proliferator-activated receptors alpha and gamma, with different anti-diabetic effects in db/db and KK-Ay mice. Br. J. Pharmcol. 157, 724-735. https://doi.org/10.1111/j.1476-5381.2009.00231.x
  4. Funk, C., Pantze, M., Jehle, L., Ponelle, C., Scheuermann, G., Lazendic, M. and Gasser, R. (2001) Troglitazone-induced intrahepatic cholestasis by an interference with the hepatobiliary export of bile acids in male and female rats. Correlation with the gender difference in troglitazone sulfate formation and the inhibition of the canalicular bile salt export pump (Bsep) by troglitazone and troglitazone sulfate. Toxicology 167, 83-98. https://doi.org/10.1016/S0300-483X(01)00460-7
  5. Golfman, L. S., Wilson, C. R., Sharma, S., Burgmaier, M., Young, M. E., Guthrie, P. H., Van Arsdall, M., Adrogue, J. V., Brown, K. K. and Taegtmeyer, H. (2005) Activation of PPARgamma enhances myocardial glucose oxidation and improves contractile function in isolated working hearts of ZDF rats. Am. J. Physiol. Endocrinol. Metab. 289, E328-336. https://doi.org/10.1152/ajpendo.00055.2005
  6. Grant, C., Greene, D. G. and Bunnell, I. L. (1965) Left ventricular enlargement and hypertrophy. A clinical and angiocardiographic study. Am. J. Med. 39, 895-904. https://doi.org/10.1016/0002-9343(65)90111-7
  7. Grossman, W., Jones, D. and McLaurin, L. P. (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56-64. https://doi.org/10.1172/JCI108079
  8. He, L., Kim, T., Long, Q., Liu, J., Wang, P., Zhou, Y., Ding, Y., Prasain, J., Wood, P. A. and Yang, Q. (2012) Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 126, 1705-1716. https://doi.org/10.1161/CIRCULATIONAHA.111.075978
  9. Kahn, S. E., Zinman, B., Lachin, J. M., Haffner, S. M., Herman, W. H., Holman, R. R., Kravitz, B. G., Yu, D., Heise, M. A., Aftring, R. P. and Viberti, G. (2008) Rosiglitazone-associated fractures in type 2 diabetes: an Analysis from A Diabetes Outcome Progression Trial (ADOPT). Diabetes Care 31, 845-851. https://doi.org/10.2337/dc07-2270
  10. Lee, H. W. (2008) DPP-4 Inhibitors and the Relations between Rosiglitazone and the Risk of Myocardial Infarction. J. Korean Med. Assoc. 51, 371-376. https://doi.org/10.5124/jkma.2008.51.4.371
  11. Lee, S. E., Jang, I. S., Park, J. S., Lee, J. H., Lee, S. Y., Baek, S. Y., Lee, S. H. and Lee, H. (2010) Systemic immunity of obese-diabetes model (db/db) mice. Mol. Cell. Toxicol. 6, 143-149. https://doi.org/10.1007/s13273-010-0021-6
  12. Lehmann, J. M., Moore, L. B., Smith-Oliver, T. A., Wilkison, W. O., Willson, T. M. and Kliewer, S. A. (1995) An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 270, 12953-12956. https://doi.org/10.1074/jbc.270.22.12953
  13. Malinowski, J. M. and Bolesta, S. (2000) Rosiglitazone in the treatment of type 2 diabetes mellitus: a critical review. Clin. Ther. 22, 1151-1168. https://doi.org/10.1016/S0149-2918(00)83060-X
  14. Momose, Y., Meguro, K., Ikeda, H., Hatanaka, C., Oi, S. and Sohda, T. (1991) Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem. Pharm. Bull. 39, 1440-1445. https://doi.org/10.1248/cpb.39.1440
  15. Nesto, R. W., Bell, D., Bonow, R. O., Fonseca, V., Grundy, S. M., Horton, E. S., Le Winter, M., Porte, D., Semenkovich, C. F., Smith, S., Young, L. H. and Kahn, R. (2003) Thiazolidinedione use, fluid retention, and congestive heart failure. Circulation 108, 2941-2948. https://doi.org/10.1161/01.CIR.0000103683.99399.7E
  16. Reifel-Miller, A., Otto, K., Hawkins, E., Barr, R., Bensch, W. R., Bull, C., Dana, S., Klausing, K., Martin, J. A., Rafaeloff-Phail, R., Rafizadeh-Montrose, C., Rhodes, G., Robey, R., Rojo, I., Rungta, D., Snyder, D., Wilbur, K., Zhang, T., Zink, R., Warshawsky, A. and Brozinick, J. T. (2005) A peroxisome proliferator-activated receptor alpha/gamma dual agonist with a unique in vitro profile and potent glucose and lipid effects in rodent models of type 2 diabetes and dyslipidemia. Mol. Endocrinol. 19, 1593-1605. https://doi.org/10.1210/me.2005-0015
  17. Singh, S. and Loke, Y. K. (2008) The safety of rosiglitazone in the treatment of type 2 diabetes. Expert Opin. Drug Saf. 7, 579-585. https://doi.org/10.1517/14740338.7.5.579
  18. Son, N. H., Park, T. S., Yamashita, H., Yokoyama, M., Huggins, L. A., Okajima, K., Homma, S., Szabolcs, M. J., Huang, L. S. and Goldberg, I. J. (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J. Clin. Invest. 117, 2791-2801. https://doi.org/10.1172/JCI30335
  19. Son, N. H., Yu, S., Tuinei, J., Arai, K., Hamai, H., Homma, S., Shulman, G. I., Abel, E. D. and Goldberg, I. J. (2010) PPARg-induced cardiolipotoxicity in mice is ameliorated by PPARa deficiency despite increases in fatty acid oxidation. J. Clin. Invest. 120, 3443-3454. https://doi.org/10.1172/JCI40905
  20. Spiegelman, B. M. (1998) PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. Diabetes 47, 507-514. https://doi.org/10.2337/diabetes.47.4.507
  21. van Wijk, J. P., de Koning, E. J., Martens, E. P. and Rabelink, T. J. (2003) Thiazolidinediones and blood lipids in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol. 23, 1744-1749. https://doi.org/10.1161/01.ATV.0000090521.25968.4D
  22. Vikramadithyan, R. K., Hirata, K., Yagyu, H., Hu, Y., Augustus, A., Homma, S. and Goldberg, I. J. (2005) Peroxisome proliferator-activated receptor agonists modulate heart function in transgenic mice with lipotoxic cardiomyopathy. J. Pharmacol. Exp. Ther. 313, 586-593.
  23. Wang, M. Y. and Unger, R. H. (2005) Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone. Am. J. Physiol. Endocrinol. Metab. 288, E216-221. https://doi.org/10.1152/ajpendo.00004.2004
  24. Yamaguchi, K., Yang, L., McCall, S., Huang, J., Yu, X. X., Pandey, S. K., Bhanot, S., Monia, B. P., Li, Y.-X. and Diehl, A. M. (2007) Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45, 1366-1374. https://doi.org/10.1002/hep.21655
  25. Young, P. W., Buckle, D. R., Cantello, B. C., Chapman, H., Clapham, J. C., Coyle, P. J., Haigh, D., Hindley, R. M., Holder, J. C., Kallender, H., Latter, A. J., Lawrie, K. W., Mossakowska, D., Murphy, G. J., Roxbee Cox, L. and Smith, S. A. (1998) Identification of high-affinity binding sites for the insulin sensitizer rosiglitazone (BRL-49653) in rodent and human adipocytes using a radioiodinated ligand for peroxisomal proliferator-activated receptor gamma. J. Pharmacol. Exp. Ther. 284, 751-759.

Cited by

  1. Preventive Effect of Yuzu and Hesperidin on Left Ventricular Remodeling and Dysfunction in Rat Permanent Left Anterior Descending Coronary Artery Occlusion Model vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0110596
  2. CKD-501, a novel selective PPARγ agonist, shows no carcinogenic potential in ICR mice following oral administration for 104 weeks vol.34, pp.12, 2014, https://doi.org/10.1002/jat.2918
  3. ENOblock, a unique small molecule inhibitor of the non-glycolytic functions of enolase, alleviates the symptoms of type 2 diabetes vol.7, 2017, https://doi.org/10.1038/srep44186
  4. The opposite effect of isotype-selective monoamine oxidase inhibitors on adipogenesis in human bone marrow mesenchymal stem cells vol.23, pp.11, 2013, https://doi.org/10.1016/j.bmcl.2013.03.117
  5. Carcinogenicity study of CKD-501, a novel dual peroxisome proliferator-activated receptors α and γ agonist, following oral administration to Sprague Dawley rats for 94–101weeks vol.69, pp.2, 2014, https://doi.org/10.1016/j.yrtph.2014.04.003
  6. PPAR-Mediated Toxicology and Applied Pharmacology vol.9, pp.2, 2020, https://doi.org/10.3390/cells9020352