DOI QR코드

DOI QR Code

Anti-Inflammatory, Antioxidant, Anti-Angiogenic and Skin Whitening Activities of Phryma leptostachya var. asiatica Hara Extract

  • Jung, Hyun-Joo (Department of Anatomy, Yonsei University College of Medicine) ;
  • Cho, Young-Wook (Korea Basic Science Institute Chuncheon Center) ;
  • Lim, Hye-Won (Shebah Biotech Inc., Chuncheon Biotechnology Foundation, Hi-Tech Venture Town) ;
  • Choi, Hojin (Department of Neurology, Hanyang University College of Medicine) ;
  • Ji, Dam-Jung (Department of Biochemistry, Kangwon National University) ;
  • Lim, Chang-Jin (Department of Biochemistry, Kangwon National University)
  • Received : 2012.08.21
  • Accepted : 2012.12.24
  • Published : 2013.01.31

Abstract

This work aimed to assess some pharmacological activities of P. leptostachya var. asiatica Hara. The dried roots of P. leptostachya var. asiatica Hara were extracted with 70% ethanol to generate the powdered extract, named PLE. Anti-angiogenic activity was detected using chick chorioallantoic membrane (CAM) assay. In vitro anti-inflammatory activity was evaluated via analyzing nitric oxide (NO) content, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Antioxidant activity was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay and reactive oxygen species (ROS) level in the stimulated macrophage cells. Matrix metalloproteinase-9 (MMP-9) and -2 (MMP-2) activities in the culture media were detected using zymography. PLE exhibits an anti-angiogenic activity in the CAM assay, and displays an inhibitory action on the generation of NO in the LPS-stimulated macrophage cells. In the stimulated macrophage cells, it is able to diminish the enhanced ROS level. It can potently scavenge the stable DPPH free radical. It suppresses the induction of iNOS and COX-2 and the enhanced MMP-9 activity in the stimulated macrophage cells. Both monooxygenase and oxidase activities of tyrosinase were strongly inhibited by PLE. Taken together, the dried roots of P. leptostachya var. asiatica Hara possess anti-angiogenic, anti-inflammatory, antioxidant and skin whitening activities, which might partly provide its therapeutic efficacy in traditional medicine.

Keywords

References

  1. Bastos, G. N., Silveira, A. J., Salgado, C. G., Picanco-Diniz, D. L. and do Nascimento, J. L. (2008) Physalis angulata extract exerts anti-inflammatory effects in rats by inhibiting different pathways. J. Ethnopharmacol. 118, 246-251. https://doi.org/10.1016/j.jep.2008.04.005
  2. Bubici, C., Papa, S., Dean, K. and Franzoso, G. (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25, 6731-6748. https://doi.org/10.1038/sj.onc.1209936
  3. Chesrown, S. E., Monnier, J., Visner, G. and Nick, H.S. (1994) Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-gamma, TGF-beta, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochem. Biophys. Res. Commun. 200, 126-134. https://doi.org/10.1006/bbrc.1994.1424
  4. Cuzzocrea, S. (2006) Role of nitric oxide and reactive oxygen species in arthritis. Curr. Pharm. Des. 12, 3551-3570. https://doi.org/10.2174/138161206778343082
  5. Iurlaro, M., Benelli, R., Masiello, L., Rosso, M., Santi, L. and Albini, A. (1998) Beta interferon inhibits HIV-1 Tat-induced angiogenesis: synergism with 13-cis retinoic acid. Eur. J. Cancer 34, 570-576. https://doi.org/10.1016/S0959-8049(97)10082-X
  6. Jachak, S. M. (2006) Cyclooxygenase inhibitory natural products: current status. Curr. Med. Chem. 13, 659-678. https://doi.org/10.2174/092986706776055698
  7. Kleiner, D. E. and Stetler-Stevenson, W.G. (1994) Quantitative zymography: detection of picogram quantities of gelatinases. Anal. Biochem. 218, 325-329. https://doi.org/10.1006/abio.1994.1186
  8. Lechner, M., Lirk, P. and Rieder, J. (2005) Inducible nitric oxide synthase (iNOS) in tumor biology: the two sides of the same coin. Semin. Cancer Biol. 15, 277-289. https://doi.org/10.1016/j.semcancer.2005.04.004
  9. Lee, S., Min, B. and Kho, Y. (2002) Brine shrimp lethality of the compounds from Phryma leptostachya L. Arch. Pharm. Res. 25, 652-654. https://doi.org/10.1007/BF02976939
  10. Lu, L.C., Chen, Y. W. and Chou, C. C. (2003) Antibacterial and DPPH free radical-scavenging activities of the ethanol extract of propolis collected in Taiwan. J. Food Drug Anal 11, 277-282.
  11. Masuda, T., Yamashita, D., Takeda, Y. and Yonemori, S. (2005) Screening for tyrosinase inhibitors among extracts of seashore plants and identification of potent inhibitors from Garcinia subelliptica. Biosci. Biotechnol. Biochem. 69, 197-201. https://doi.org/10.1271/bbb.69.197
  12. Moon, J. Y., Yim, E. Y., Song, G., Lee, N. H. and Hyun, C. G. (2010) Screening of elastase and tyrosinase inhibitory activity from Jeju Island plants. EurAsia J. BioSci. 4, 41-53.
  13. Mott, J. D. and Werb, Z. (2004) Regulation of matrix biology by matrix metalloproteinases. Curr. Opin. Cell Biol. 16, 558-564. https://doi.org/10.1016/j.ceb.2004.07.010
  14. Mu, P., Gao, X., Jia, Z. J. and Zheng, R. L. (2008) Natural antioxidant pedicularioside G inhibits angiogenesis and tumourigenesis in vitro and in vivo. Basic Clin. Pharmacol. Toxicol. 102, 30-34.
  15. Nordberg, J. and Arnér, E. S. (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med. 31, 1287-1312. https://doi.org/10.1016/S0891-5849(01)00724-9
  16. Park, I. K., Shin, S. C., Kim, C. S., Lee, H. J., Choi, W. S. and Ahn, Y. J. (2005) Larvicidal activity of lignans identified in Phryma leptostachya var. asiatica roots against three mosquito species. J. Agric. Food Chem. 53, 969-972. https://doi.org/10.1021/jf048208h
  17. Quan, G. M. and Choong, P. F. (2006) Anti-angiogenic therapy for osteosarcoma. Cancer Metastasis Rev. 25, 707-713.
  18. Risau, W. (1995) Differentiation of endothelium. FASEB J. 9, 926-933. https://doi.org/10.1096/fasebj.9.10.7615161
  19. Royall, J. A. and Ischiropoulos, H. (1993) Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch. Biochem. Biophys. 302, 348-355. https://doi.org/10.1006/abbi.1993.1222
  20. Rusnati, M. and Presta, M. (2007) Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenic strategies. Curr. Pharm. Des. 13, 2025-2044, 2007. https://doi.org/10.2174/138161207781039689
  21. Sagar, S. M., Yance, D. and Wong, R. K. (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer - Part 1. Curr. Oncol. 13, 14-26.
  22. Sherman, M. P., Aeberhard, E. E., Wong, V. Z., Griscavage, J. M. and Ignarro, L. J. (1993) Pyrrolidine dithiocarbamate inhibits induction of nitric oxide synthase activity in rat alveolar macrophages. Biochem. Biophys. Res. Commun. 191, 1301-1308. https://doi.org/10.1006/bbrc.1993.1359
  23. Singh, V. K., Mehrotra, S., Narayan, P., Pandey, C. M. and Agarwal, S.S. (2000) Modulation of autoimmune diseases by nitric oxide. Immunol. Res. 22, 1-19. https://doi.org/10.1385/IR:22:1:1
  24. Song, Y.S., Kim, S. H., Sa, J. H., Jin, C., Lim, C. J. and Park, E. H. (2004) Anti-angiogenic and inhibitory activity on inducible nitric oxide production of the mushroom Ganoderma lucidum. J. Ethnopharmacol. 90, 17-20. https://doi.org/10.1016/j.jep.2003.09.006
  25. Sorsa, T., Tjäderhane, L. Konttinen, Y. T., Lauhio, A., Salo, T., Lee, H. M., Golub, L. M., Brown, D. L. and Mäntylä, P. (2006) Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med. 38, 306-321. https://doi.org/10.1080/07853890600800103
  26. Taniguchi, E. and Oshima, Y. (1972a) Phrymarolin-I, a novel lignin from Phryma leptostachya L. Agric. Biol. Chem. 36, 1013-1025. https://doi.org/10.1271/bbb1961.36.1013
  27. Taniguchi, E. and Oshima, Y. (1972b) Structure of phrymarolin-II. Agric. Biol. Chem. 36, 1489-1496. https://doi.org/10.1271/bbb1961.36.1489
  28. Taniguchi, E., Imamura, K., Ishibashi, F., Matsui, T. and Nishio. A. (1989) Structure of the novel insecticides sesquilignan, haedoxan A. Agric. Biol. Chem. 53, 631-643. https://doi.org/10.1271/bbb1961.53.631

Cited by

  1. Ethnobotany of Jeju Island, Korea vol.28, pp.2, 2015, https://doi.org/10.7732/kjpr.2015.28.2.217
  2. Trametramide A, a new pyridone alkaloid from the fungusTrametes trogiiTGC-P-3 vol.54, pp.9, 2016, https://doi.org/10.1002/mrc.4451
  3. A random, case-control study on the efficacy and safety of Weishi Bitong Xifang fumigation for mild and moderate knee osteoarthritis patients vol.18, pp.5, 2015, https://doi.org/10.1111/1756-185X.12165
  4. Enhancement of Skin Antioxidant and Anti-Inflammatory Potentials of Agastache rugosa Leaf Extract by Probiotic Bacterial Fermentation in Human Epidermal Keratinocytes vol.45, pp.1, 2017, https://doi.org/10.4014/mbl.1701.01002
  5. Insecticidal Activity of Four Lignans Isolated from Phryma leptostachya vol.24, pp.10, 2019, https://doi.org/10.3390/molecules24101976
  6. A Synthetic View on Haedoxans and Related Neolignans From Phryma leptostachya vol.8, pp.None, 2013, https://doi.org/10.3389/fchem.2020.00460
  7. Anti-Inflammatory, Barrier-Protective, and Antiwrinkle Properties of Agastache rugosa Kuntze in Human Epidermal Keratinocytes vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1759067
  8. Total Synthesis and Anti-Tobacco Mosaic Virus Activity of the Furofuran Lignan (±)-Phrymarolin II and Its Analogues vol.84, pp.11, 2013, https://doi.org/10.1021/acs.jnatprod.1c00763