DOI QR코드

DOI QR Code

Emerging Roles of Human Prostatic Acid Phosphatase

  • Kong, Hoon Young (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Byun, Jonghoe (Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • Received : 2012.12.04
  • Accepted : 2013.01.14
  • Published : 2013.01.31

Abstract

Prostate cancer is one of the most prevalent non-skin related cancers. It is the second leading cause of cancer deaths among males in most Western countries. If prostate cancer is diagnosed in its early stages, there is a higher probability that it will be completely cured. Prostatic acid phosphatase (PAP) is a non-specific phosphomonoesterase synthesized in prostate epithelial cells and its level proportionally increases with prostate cancer progression. PAP was the biochemical diagnostic mainstay for prostate cancer until the introduction of prostate-specific antigen (PSA) which improved the detection of early-stage prostate cancer and largely displaced PAP. Recently, however, there is a renewed interest in PAP because of its usefulness in prognosticating intermediate to high-risk prostate cancers and its success in the immunotherapy of prostate cancer. Although PAP is believed to be a key regulator of prostate cell growth, its exact role in normal prostate as well as detailed molecular mechanism of PAP regulation is still unclear. Here, many different aspects of PAP in prostate cancer are revisited and its emerging roles in other environment are discussed.

Keywords

References

  1. Abrahamsson, P. A., Lilja, H., Falkmer, S. and Wadstrom, L. B. (1988) Immunohistochemical distribution of the three predominant secretory proteins in the parenchyma of hyperplastic and neoplastic prostate glands. Prostate 12, 39-46. https://doi.org/10.1002/pros.2990120106
  2. Afzal, S., Ahmad, M., Mushtaq, S., Mubarik, A., Qureshi, A. H. and Khan, S. A. (2003) Morphological features correlation with serum tumor markers in prostatic carcinoma. J. Coll. Physicians. Surg. Pak. 13, 511-514.
  3. Antonarakis, E. S. and Drake, C. G., (2010) Current status of immunological therapies for prostate cancer. Curr. Opin. Urol. 20, 241-246. https://doi.org/10.1097/MOU.0b013e3283381793
  4. Azumi, N., Traweek, S. T. and Battifora, H. (1991) Prostatic acid phosphatase in carcinoid tumors: Immunohistochemical and immunoblot studies. Am. J. Surg. Pathol. 15, 758-790.
  5. Batta, A., Panag, KMDS. and Singh, J. (2012) Diagnosis of prostate cancer --- Role of biomarkers. Int. J. Cur. Biomed. Phar. Res. 2, 339-345.
  6. Batta, A., Panag, KMDS. and Singh, J. (2012) Diagnosis of prostate cancer --- Role of biomarkers. Int. J. Cur. Biomed. Phar. Res. 2, 339-345.
  7. Brawer, M. K., Chetner, M. P., Beatie, J., Buchner, D. M., Vessella, R. L. and Lange, P. H. (1992) Screening for prostatic carcinoma with prostate specific antigen. J. Urol. 147, 841-845. https://doi.org/10.1016/S0022-5347(17)37401-3
  8. Bussemakers, M. J., van Bokhoven, A., Verhaegh, G. W., Smit, F. P., Karthaus, H. F., Schalken, J. A., Debruyne, F. M., Ru, N. and Isaacs, W. B. (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 59, 5975-5979.
  9. Cheever, M. A. and Higano, C. S. (2011) PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520-3526. https://doi.org/10.1158/1078-0432.CCR-10-3126
  10. Chen, H., Pong, R. C., Wang, Z. and Hsieh, J. T. (2002) Differential regulation of the human gene DAB2IP in normal and malignant prostatic epithelia: cloning and characterization. Genomics 79, 573-581. https://doi.org/10.1006/geno.2002.6739
  11. Collins, K. A. and Bennett, A. T. (2011) Persistence of spermatozoa and prostatic acid phosphatase in specimens from decreased individuals during varied postmortem intervals. Am. J. Forensic Med. Pathol. 22, 228-232.
  12. Coussens, L. M. and Werb, Z. (2002) Inflammation and cancer. Nature 420, 860-867. https://doi.org/10.1038/nature01322
  13. Dave, B. N. and Rindani, T. H. (1988) Acid phosphatase activity in human semen. Int. J. Fertil. 33, 45-47.
  14. Deftos, L. J. (1998) Granin-A, parathyroid hormone-related protein, and calcitonin gene products in neuroendocrine prostate cancer. Prostate Suppl. 8, 23-31.
  15. Drake, C. G. (2010) Prostate cancer as a model for tumour immunotherapy. Nat. Rev. Immunol. 10, 580-593. https://doi.org/10.1038/nri2817
  16. Drake, C. G. (2012) Interdisciplinary critique of sipuleucel-T as immunotherapy in castration-resistant prostate cancer. J. Natl. Cancer Inst. 104, 1422.
  17. Erbas, H., Erten, O. and Irfanoglu, M. E. (2007) Prostatic acid phosphatase in breast cyst fluid. Malays. J. Pathol. 29, 95-99.
  18. Ercole, C. J., Lange, P. H., Mathisen, M., Chiou, R. K., Reddy, P. K. and Vessella, R. L. (1987) Prostatic specific antigen and prostatic acid phosphatase in the monitoring and staging of patients with prostatic cancer. J. Urol. 138, 1181-1184. https://doi.org/10.1016/S0022-5347(17)43543-9
  19. Fang, L.C., Dattoli, M., Taira, A., True, L., Sorace, R. and Wallner K. (2008) Prostatic acid phosphatase adversely affects cause-specific survival in patients with intermediate to high-risk prostate cancer treated with brachytherapy. Urology 71, 146-150. https://doi.org/10.1016/j.urology.2007.08.024
  20. Garcia, J. A. (2011) Sipuleucel-T in patients with metastatic castration-resistant prostate cancer: an insight for oncologists. Ther. Adv. Med. Oncol. 3, 101-108. https://doi.org/10.1177/1758834010397692
  21. Gerdes, J., Lemke, H., Baisch, H., Wacker, H. H., Schwab, U. and Stein, H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 133, 1710-1715.
  22. Gerritsen, W. R. (2012) The evolving role of immunotherapy in prostate cancer. Ann. Oncol. 23, viii22-27. https://doi.org/10.1093/annonc/mds259
  23. Getzenberg, R. H., Pienta, K. J., Huang, E. Y. and Coffey, D. S. (1991) Identification of nuclear matrix proteins in the cancer and normal rat prostate. Cancer Res. 51, 6514-6520.
  24. Goldfarb, D. A., Stein, B. S., Shamszadeh, M. and Petersen, R. O. (1986) Age-related changes in tissue level of prostatic acid phosphatase and prostate specific antigen. J. Urol. 136, 1266-1269. https://doi.org/10.1016/S0022-5347(17)45310-9
  25. Graddis, T. J., McMahan, C. J., Tamman, J., Page, K. J. and Trager, J. B. (2011) Prostatic acid phosphatase expression in human tissues. Int. J. Clin. Exp. Pathol. 4, 295-306.
  26. Gunia, S., Koch, S., May, M., Dietel, M. and Erbersdobler, A. (2009) Expression of prostatic acid phosphatase (PSAP) in transurethral resection specimens of the prostate is predictive of histopathologic tumor stage in subsequent radical prostatectomies. Virchows. Arch. 454, 573-579. https://doi.org/10.1007/s00428-009-0759-1
  27. Gupta, A., Lotan, Y., Ashfaq, R., Roehrborn, C. G., Raj, G. V., Aragaki, C. C., Montorsi, F. and Shariat, S. F. (2009) Predictive value of the differential expression of the urokinase plasminogen activation axis in radical prostatectomy patients. Eur. Urol. 55, 1124-1133. https://doi.org/10.1016/j.eururo.2008.06.054
  28. Gutman, A. B. and Gutman, E. B. (1938) An "acid" phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. J. Clin. Invest. 17, 473-478. https://doi.org/10.1172/JCI100974
  29. Harvey, A. M., Grice, B., Hamilton, C., Truong, L. D., Ro, J. Y., Ayala, A. G. and Zhai, Q. J. (2010) Diagnostic utility of P504S/p63 cocktail, prostate-specific antigen, and prostatic acid phosphatase in verifying prostatic carcinoma involvement in seminal vesicles: a study of 57 cases of radical prostatectomy specimens of pathologic stage pT3b. Arch. Pathol. Lab. Med. 134, 983-988.
  30. Hassan, M. I., Aijaz, A. and Ahmad, F. (2010) Structural and functional analysis of human prostatic acid phosphatase. Expert. Rev. Anticancer Ther. 10, 1055-1068. https://doi.org/10.1586/era.10.46
  31. Hobisch, A., Eder, I. E., Putz, T., Horninger, W., Bartsch, G., Klocker, H. and Culig Z. (1998) Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res. 58, 4640-4645.
  32. Hong, S., Klein, E. A., Das Gupta, J., Hanke, K., Weight, C. J., Nguyen, C., Gaughan, C., Kim, K. A., Bannert, N., Kirchhoff, F., Munch, J. and Silverman, R. H. (2009) Fibrils of prostatic acid phosphatase fragments boost infections with XMRV (xenotropic murine leukemia virus-related virus), a human retrovirus associated with prostate. J. Virol. 83, 6995-7003. https://doi.org/10.1128/JVI.00268-09
  33. Hsing, A. W. and Chokkalingam, A. P. (2006) Prostate cancer epidemiology. Front. Biosci. 11, 1388-1413. https://doi.org/10.2741/1891
  34. Huang, C. L., Brassil, D., Rozzell, M., Schellhammer, P. F. and Wright, G. L. Jr. (1993) Comparison of prostate secretory protein with prostate specific antigen and prostatic acid phosphatase as a serum biomarker for diagnosis and monitoring patients with prostate carcinoma. Prostate 23, 201-212. https://doi.org/10.1002/pros.2990230303
  35. Hubert, R. S., Vivanco, I., Chen, E., Rastegar, S., Leong, K., Mitchell, S. C., Madraswala, R., Zhou, Y., Kuo, J., Raitano, A. B., Jakobovits, A., Saffran, D. C. and Afar, D. E. (1999) STEAP: A prostate-specific cell-surface antigen highly expressed in human prostate tumors. Proc. Natl. Acad. Sci. USA 96, 14523-14528. https://doi.org/10.1073/pnas.96.25.14523
  36. Hurt, J. K., Fitzpatrick, B. J. Norris-Drouin, J. and Zylka, M. J. (2012a) Secretion and N-linked glycosylation are required for prostatic acid phosphatase catalytic and antinociceptive activity. PLoS One 7, e32741. https://doi.org/10.1371/journal.pone.0032741
  37. Hurt, J. K. and Zylka, M. J. (2012b) PAPupuncture has localized and long-lasting antinociceptive effects in mouse models of acute and chronic pain. Mol. Pain. 8, 28. https://doi.org/10.1186/1744-8069-8-28
  38. Jakob, C. G., Lewinski, K., Kuciel, R., Ostrowski, W. and Lebioda, L. (2000) Crystal structure of human prostatic acid phosphatase. Prostate 42, 211-218. https://doi.org/10.1002/(SICI)1097-0045(20000215)42:3<211::AID-PROS7>3.0.CO;2-U
  39. Kong, H. Y., Lee, H. J. and Byun, J. (2011) Roles of prostatic acid phosphatase in prostate cancer. J. Life Sci. 21, 893-900. https://doi.org/10.5352/JLS.2011.21.6.893
  40. Korkmaz, C. G., Korkmaz, K. S., Kurys, P., Elbi, C., Wang, L., Klokk, T. I., Hammarstrom, C., Troen, G., Svindland, A., Hager, G. L. and Saatcioglu, F. (2005) Molecular cloning and characterization of STAMP2, an androgen-regulated six transmembrane protein that is overexpressed in prostate cancer. Oncogene 24, 4934-4945. https://doi.org/10.1038/sj.onc.1208677
  41. Korkmaz, K. S.,, Elbi, C., Korkmaz, C. G., Loda, M., Hager, G. L. and Saatcioglu, F. (2002) Molecular cloning and characterization of STAMP1, a highly prostate-specific six transmembrane protein that is overexpressed in prostate cancer. J. Biol. Chem. 277, 36689-36696. https://doi.org/10.1074/jbc.M202414200
  42. Kraus, T. S., Cohen, C. and Siddiqui, M. T. (2010) Prostate-specific antigen and hormone receptor expression in male and female breast carcinoma. Diagn. Pathol. 5, 63. https://doi.org/10.1186/1746-1596-5-63
  43. Kristiansen, G., Fritzsche, F. R., Wassermann, K., Jäger, C., Tölls, A., Lein, M., Stephan, C., Jung, K., Pilarsky, C., Dietel, M. and Moch, H. (2008) GOLPH2 protein expression as a novel tissue biomarker for prostate cancer: implications for tissue-based diagnostics. Br. J. Cancer 99, 939-948. https://doi.org/10.1038/sj.bjc.6604614
  44. Kuciel, R., Bakalova, A., Mazurkiewicz, A., Bilska, A. and Ostrowski, W. (1990) Is the subunit of prostatic phosphatase active?Reversible denaturation of prostatic acid phosphatase. Biochem. Int. 22, 329-334. https://doi.org/10.1016/0020-711X(90)90134-O
  45. Larne, O., Martens-Uzunova, E., Hagman, Z., Edsjo, A., Lippolis, G., den Berg, M. S., Bjartell, A., Jenster, G. and Ceder, Y. (2012) miQ - a novel microRNA based diagnostic and prognostic tool for prostate cancer. Int. J. Cancer doi: 10.1002/ijc.27973. [Epub ahead of print]
  46. Lee, H., Chu, T. M., Li, S. S. and Lee, C. L. (1991) Homodimer and heterodimer subunits of human prostatic acid phosphatase. Biochem. J. 277, 759-765. https://doi.org/10.1042/bj2770759
  47. Lee, W. H., Morton, R. A., Epstein, J. I., Brooks, J. D., Campbell, P. A., Bova, G. S., Hsieh, W. S., Isaacs, W. B. and Nelson, W. G. (1994) Cytidine methylation of regulatory sequences near the pi-class glutathione S-transferase gene accompanies human prostatic carcinogenesis. Proc. Natl. Acad. Sci. USA 91, 11733-11737. https://doi.org/10.1073/pnas.91.24.11733
  48. Li, T. S. and Beling, C. G. (1973) Isolation and characterization of two specific antigens of human seminal plasma. Fertil. Steril. 24, 134-144. https://doi.org/10.1016/S0015-0282(16)39496-1
  49. Lin, M. F., Garcia-Arenas, R., Xia, X. Z., Biela, B. and Lin, F. F. (1994) The cellular level of prostatic acid phosphatase and the growth of human prostate carcinoma cells. Differentiation 57, 143-149. https://doi.org/10.1046/j.1432-0436.1994.5720143.x
  50. Lin, M. F., Lee, M. S., Zhou, X. W., Andressen, J. C., Meng, T. C., Johansson, S. L., West, W. W., Taylor, R. J., Anderson, J. R. and Lin, F. F. (2001) Decreased expression of cellular prostatic acid phosphatase increases tumorigenicity of human prostate cancer cells. J. Urol. 166, 1943-1950. https://doi.org/10.1016/S0022-5347(05)65725-4
  51. Lin, M. F., Meng, T. C., Rao, P. S., Chang, C., Schonthal, A. H. and Lin, F. F. (1998) Expression of human prostatic acid phosphatase correlates with androgen-stimulated cell proliferation in prostate cancer cell lines. J. Biol. Chem. 273, 5939-5947. https://doi.org/10.1074/jbc.273.10.5939
  52. Liu, B. Q., Wu, Y. D., Li, P. H., Wei, J. X., Zhang, T. and Liu R. L. (2007) Prostate cancer antigen-1 as a potential novel marker for prostate cancer. Asian J. Androl. 9, 821-826. https://doi.org/10.1111/j.1745-7262.2007.00279.x
  53. Lubaroff, D. M. (2012) Prostate cancer vaccines in clinical trials. Expert. Rev. Vaccines 11, 857-868. https://doi.org/10.1586/erv.12.54
  54. Madu, C. O. and Lu, Y. (2010) Novel diagnostic biomarkers for prostate cancer. J. Cancer 1, 150-177.
  55. Makarov, D. V., Loeb, S., Getzenberg, R. H. and Partin, A. W. (2009) Biomarkers for prostate cancer. Ann. Rev. Medicine 60, 139-151. https://doi.org/10.1146/annurev.med.60.042307.110714
  56. McNeel, D. G., Dunphy, E.J., Davies, J. G., Frye, T. P., Johnson, L. E., Staab, M. J., Horvath, D. L., Straus, J., Alberti, D., Marnocha, R., Liu, G., Eickhoff, J. C. and Wilding, G. (2009) Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with D0 prostate cancer. J. Clin. Oncol. 27, 4047-4054. https://doi.org/10.1200/JCO.2008.19.9968
  57. Meng, T. C., Lee, M. S. and Lin, M. F. (2000) Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene19, 2664-2677. https://doi.org/10.1038/sj.onc.1203576
  58. Merrick, G. S., Butler, W. M., Wallner, K. E., Allen, Z., DeFilippo, J. L. and Adamovich, E. (2005) Enzymatic prostatic acid phosphatase in the clinical staging of patients diagnosed with prostate cancer. W. V. Med. J. 101, 116-119.
  59. Munch, J., Rücker, E, Ständker, L., Adermann, K., Goffinet, C., Schindler, M., Wildum, S., Chinnadurai, R., Rajan, D., Specht, A., Giménez-Gallego, G., Sánchez, P. C., Fowler, D. M., Koulov, A., Kelly, J. W., Mothes, W., Grivel, J. C., Margolis, L., Keppler, O. T., Forssmann, W. G. and Kirchhoff, F. (2007) Semen-derived amyloid-fibrils drastically enhance HIV infection. Cell 131, 1059-1071. https://doi.org/10.1016/j.cell.2007.10.014
  60. Okar, D. A., Live, D. H., Devany, M. H. and Lange, A. J. (2000) Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy. Biochemistry 39, 9754-9762. https://doi.org/10.1021/bi000815k
  61. Ortlund, E., LaCount, M. W. and Lebioda, L. (2003) Crystal structure of human prostatic acid phosphatase in complex with a phosphate ion and a-benzylaminobenzylphosphonic acid update the mechanistic picture and offer new insight into inhibitor design. Biochemistry 42, 383-389. https://doi.org/10.1021/bi0265067
  62. Ostanin, K., Saeed, A. and Van Etten, R. L. (1994) Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J. Biol. Chem. 269, 8971-8978.
  63. Ostrowski, W. S. and Kuciel, R. (1994) Human prostatic acid phosphatase: selected properties and practical applications. Clin. Chim. Acta. 226, 121-129. https://doi.org/10.1016/0009-8981(94)90209-7
  64. Porvari, K., Kurkela, R., Kivinen, A. and Vihko, P. (1995) Differential androgen regulation of rat prostatic acid phosphatase transcripts. Biochem. Biophys. Res. Commun. 213, 861-868. https://doi.org/10.1006/bbrc.1995.2208
  65. Quintero, I. B., Araujo, C. L., Pulkka, A. E., Wirkkala, R. S., Herrala, A. M., Eskelinen, E. L., Jokitalo, E., Hellström, P. A., Tuominen, H. J., Hirvikoski, P. P. and Vihko, P. T. (2007) Prostatic acid phosphatase is not a prostate specific target. Cancer Res. 67, 6549-6554. https://doi.org/10.1158/0008-5472.CAN-07-1651
  66. Reif, A. E., Schlesinger, R. M., Fish, C. A. and Robinson, C. M. (1973) Acid phosphatase isoenzymes in cancer of the prostate. Cancer 31, 689-699. https://doi.org/10.1002/1097-0142(197303)31:3<689::AID-CNCR2820310331>3.0.CO;2-F
  67. Reiter, R. E., Gu, Z., Watabe, T., Thomas, G., Szigeti, K., Davis, E., Wahl, M., Nisitani, S., Yamashiro, J., Le Beau, M. M., Loda, M. and Witte, O. N. (1998) Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl. Acad. Sci. USA 95, 1735-1740. https://doi.org/10.1073/pnas.95.4.1735
  68. Rogers, C. G., Yan, G., Zha, S., Gonzalgo, M. L., Isaacs, W. B., Luo, J., De Marzo, A. M., Nelson, W. G. and Pavlovich, C. P. (2004) Prostate cancer detection on urinalysis for alpha methylacyl coenzyme A racemase protein. J. Urol. 172, 1501-1503. https://doi.org/10.1097/01.ju.0000137659.53129.14
  69. Roiko, K., Jänne, O. A. and Vihko, P. (1990) Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatase. Gene 89, 223-229. https://doi.org/10.1016/0378-1119(90)90009-G
  70. Ronnberg, L., Vihko, P., Sajanti, E. and Vihko, R. (1981). Clomiphene citrate administration to normogonadotrophic subfertile men: blood hormone changes and activation of acid phosphatase in seminal fluid. Int. J. Androl. 4, 372-378. https://doi.org/10.1111/j.1365-2605.1981.tb00721.x
  71. Roth, T. J., Sheinin, Y., Lohse, C. M., Kuntz, S. M., Frigola, X., Inman, B. A., Krambeck, A. E., McKenney, M. E., Karnes, R. J., Blute. M. L., Cheville, J. C., Sebo, T. J. and Kwon, E. D. (2007) B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 67, 7893-7900. https://doi.org/10.1158/0008-5472.CAN-07-1068
  72. Rubenstein, M., Hollowell, C. M. and Guinan, P. (2012) Differentiated prostatic antigen expression in LNCaP cells following treatment with bispecific antisense oligonucleotides directed against BCL-2 and EGFR. Med. Oncol. 29, 835-841. https://doi.org/10.1007/s12032-011-9977-x
  73. Saito, T., Hara, N., Kitamura, Y. and Komatsubara, S. (2007) Prostate-specific antigen/ prostatic acid phosphatase ratio is significant prognostic factor in patients with stage IV prostate cancer. Urology 70, 702-705. https://doi.org/10.1016/j.urology.2007.05.019
  74. Shan. J., Porvari, K., Kivinen, A., Patrikainen, L., Halmekytö, M., Jänne, J. and Vihko, P. (2003) Tissue-specific expression of the prostatic acid phosphatase promoter constructs. Biochem. Biophys. Res. Commun. 311, 864-869. https://doi.org/10.1016/j.bbrc.2003.10.071
  75. Shan, J., Porvari, K. and Vihko, P. (2005) GAAAATATGATA-like elements in androgen-associated regulation of the prostatic acid phosphatasegene. J. Steroid. Biochem. Mol. Biol. 96, 245-249. https://doi.org/10.1016/j.jsbmb.2005.04.031
  76. Shariat, S. F., Scherr, D. S., Gupta, A., Bianco, F. J. Jr, Karakiewicz, P. I., Zeltser, I. S., Samadi, D. B. and Akhavan, A. (2011) Emerging biomarkers for prostate cancer diagnosis, staging, and prognosis. Arch. Esp. Urol. 64, 681-694.
  77. Sharma, S. and Juffer, A. H. (2009) Hydrolysis of phosphohistidine in water and in prostatic acid phosphatase. Chem. Commun (Camb). 14, 6385-6387.
  78. Sheftic, S., R., Snell, J., M., Jha, S. and Alexandrescu, A. T. (2012) Inhibition of semen-derived enhancer of virus infection (SEVI) fibrillogenesis by zinc and copper. Eur. Biophys J. 41, 695-704. https://doi.org/10.1007/s00249-012-0846-0
  79. Sheridan, T., Herawi, M., Epstein, J. I. and Illei, P. B. (2007) The role of P501S and PSA in diagnosis of metastatic adenocarcinoma of the prostate. Am. J. Surg. Pathol. 31, 1351-1355. https://doi.org/10.1097/PAS.0b013e3180536678
  80. Sims, R. B. (2012) Development of sipuleucel-T: autologous cellular immunotherapy for the treatment of metastatic castrate resistant prostate cancer. Vaccine 30, 4394-4397. https://doi.org/10.1016/j.vaccine.2011.11.058
  81. Singh, G., Adaikan, P. G. and Ng, Y. K. (1996) Is seminal prostatic acid phosphatase a reliable marker for male infertility? Singapore Med. J. 37, 598-599.
  82. Small, E. J., Schellhammer, P. F., Higano, C. S., Redfern, C. H., Nemunaitis, J. J., Valone, F. H., Verjee, S. S., Jones, L. A. and Hershberg, R. M. (2006) Placebo-controlled Phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J. Clin. Oncol. 24, 3089-3094. https://doi.org/10.1200/JCO.2005.04.5252
  83. Solin, T., Kontturi, M., Pohlmann, R. and Vihko, P. (1990) Gene expression and prostate specificity of human prostatic acid phosphatase (PAP) : evaluation by RNA blot analyses. Biochim. Biophys. Acta. 1048, 72-77. https://doi.org/10.1016/0167-4781(90)90024-V
  84. Sowa, N. A., Street, S. E., Vihko, P. and Zylka, M. J. (2010) Prostatic acid phosphatase reduces thermal sensitivity and chronic pain sensitization by depleting phosphatidylinositol 4,5-bisphosphate. J. Neurosci. 30, 10282-10293. https://doi.org/10.1523/JNEUROSCI.2162-10.2010
  85. Sowa, N. A., Vadakkan, K. I. and Zylka, M. J. (2009) Recombinant mouse PAP has pH-dependent ectonucleotidase activity and acts through A(1)-adenosine receptors to mediate antinociception. PLoS One 4, e4248. https://doi.org/10.1371/journal.pone.0004248
  86. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan, A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn, G. S., Ghosh, D., Pennathur, S., Alexander, D. C., Berger, A., Shuster, J. R., Wei, J. T., Varambally, S., Beecher, C. and Chinnaiyan, A. M. (2009) Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature 457, 910-914. https://doi.org/10.1038/nature07762
  87. Stamey, T. A., Yang, N., Hay, A. R., McNeal, J. E., Freiha, F. S. and Redwine, E. (1987) Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N. Engl. J. Med. 317, 909-916. https://doi.org/10.1056/NEJM198710083171501
  88. Street, S. E., Walsh, P. L., Sowa, N. A., Taylor-Blake, B., Guillot, T. S., Vihko, P., Wightman, R. M. and Zylka, M. J. (2011) PAP and NT5E inhibit nociceptive neurotransmission by rapidly hydrolyzing nucleotides to adenosine. Mol. Pain 7, 80. https://doi.org/10.1186/1744-8069-7-80
  89. Taira, A., Merrick, G., Wallner, K. and Dattoli, M. (2007) Reviving the acid phosphatase test for prostate cancer. Oncology 21, 1003-1010.
  90. Tasken, K. A., Angelsen, A., Svindland, A., Eide, T., Berge, V., Wahlquist, R. and Karlsen, S. (2005) Markers for diagnosis, prediction and prognosis of prostate cancer. Tidsskr. Nor. Laegeforen. 125, 3279-3282.
  91. Thompson, T. C., Tahir, S. A., Li, L., Watanabe, M., Naruishi, K., Yang, G., Kadmon, D., Logothetis, C. J., Troncoso, P., Ren, C., Goltsov, A. and Park, S. (2010) The role of caveolin-1 in prostate cancer: clinical implications. Prostate Cancer Prostatic. Dis. 13, 6-11. https://doi.org/10.1038/pcan.2009.29
  92. Tian, W., Osawa, M., Horiuchi, H. and Tomita, Y. (2004) Expression of the prolactin-inducible protein (PIP/GCDFP15) gene in benign epithelium and adenocarcinoma of the prostate. Cancer Sci. 95, 491-495. https://doi.org/10.1111/j.1349-7006.2004.tb03238.x
  93. Truong, L. D., Kadmon, D., McCune, B. K., Flanders, K. C., Scardino, P. T. and Thompson, T. C. (1993) Association of transforming growth factor-beta 1 with prostate cancer: An immunohistochemical study. Hum. Pathol. 24, 4-9. https://doi.org/10.1016/0046-8177(93)90055-L
  94. Van Etten, R. L. (1982) Human prostatic acid phosphatase: a histidine phosphatase. Ann. N. Y. Acad. Sci. 390, 27-51. https://doi.org/10.1111/j.1749-6632.1982.tb40302.x
  95. Van Etten, R. L., Davidson, R., Stevis, P. E., MacArthur, H. and Moore, D. L. (1991) Covalent structure, disulfide binding, and identification of reactive surface and active site residues of human prostatic acid phosphatase. J. Biol. Chem. 266, 2313-2319.
  96. Vanaja, D. K., Ballman, K. V., Morlan, B. W., Cheville, J. C., Neumann, R. M., Lieber, M. M., Tindall, D. J. and Young, C. Y. (2006) PDLIM4 repression by hypermethylation as a potential biomarker for prostate cancer. Clin. Cancer Res. 12, 1128-1136. https://doi.org/10.1158/1078-0432.CCR-05-2072
  97. Veeramani, S., Yuan, T. C., Chen, S. J., Lin, F. F., Petersen, J. E., Shaheduzzaman, S., Srivastava, S., MacDonald, R. G. and Lin, M. F. (2005) Cellular prostatic acid phosphatase : a protein tyrosine phosphatase involved in androgen-independent proliferation of phosphatase. Endocr. Relat. Cancer 12, 805-822. https://doi.org/10.1677/erc.1.00950
  98. Vieweg, J. and Dannull, J. (2005) Technology insight: vaccine therapy for prostate cancer. Nat. Clin. Pract. Urol. 2, 44-51. https://doi.org/10.1038/ncpuro0079
  99. Vihko, P., Herrala, A., Härkönen, P., Isomaa, V., Kaija, H., Kurkela, R., Li, Y., Patrikainen, L., Pulkka, A., Soronen, P. and Torn, S. (2005) Enzymes as modulators in malignant transformation. J. Steroid Biochem. Mol. Biol. 93, 277-283. https://doi.org/10.1016/j.jsbmb.2005.01.002
  100. Vihko, P., Kontturi, M. and Korhonen, L. K. (1978) Purification of human prostatic acid phosphatase by affinity chromatography and isoelectric focusing. Part I. Clin. Chem. 24, 466-470.
  101. Wang, Y., Harada, M., Yano, H., Ogasawara, S., Takedatsu, H., Arima, Y., Matsueda, S., Yamada, A. and Itoh, K. (2005) Prostatic acid phosphatase as a target molecule in specific immunotherapy for patients with nonprostate adenocarcinoma. J. Immunother. 28, 535-541. https://doi.org/10.1097/01.cji.0000175490.26937.22
  102. Wikstrom, P., Lissbrant, I. F., Stattin, P., Egevad, L. and Bergh, A. (2002) Endoglin (CD105) is expressed on immature blood vessels and is a marker for survival in prostate cancer. Prostate 51, 268-275. https://doi.org/10.1002/pros.10083
  103. Winqvist, R., Virkkunen, P., Grzeschik, K. H. and Vihko, P. (1989) Chromosomal localization to 3q21----qter and two TaqI RFLPs of the human prostatic-specific acid phosphatase gene (ACPP). Cytogenet. Cell Genet. 52, 68-71. https://doi.org/10.1159/000132842
  104. Young, A., Palanisamy, N., Siddiqui, J., Wood, D., P., Wei, J., T., Chinnaiyan., A. M., Kunju, L., P. and Tomlins, S. A. (2012) Correlation of Urine TMPRSS2:ERG and PCA3 to ERG+ and Total Prostate Cancer Burden. Am. J. Clin. Pathol. 138, 685-696. https://doi.org/10.1309/AJCPU7PPWUPYG8OH
  105. Zelivianski, S., Comeau, D. and Lin, M. F. (1998) Cloning and analysis of the promoter activity of the human prostatic acid phosphatase gene. Biochem. Biophys. Res. Commun. 245, 108-112. https://doi.org/10.1006/bbrc.1998.8386
  106. Zelivianski, S., Glowacki, R. and Lin, M. F. (2004) Transcriptional activation of the human prostatic acid phosphatase gene by NF-$\kappa B$ via a novel hexanucleotide-binding site. Nucleic. Acid. Res. 32, 3566-3580. https://doi.org/10.1093/nar/gkh677
  107. Zhang, X. Q., Lee, M. S., Zelivianski, S. and Lin, M. F. (2001) Characterization of a prostate-specific tyrosine phosphatase by mutagenesis and expression in human prostate cancer cells. J. Biol. Chem. 276, 2544-2550. https://doi.org/10.1074/jbc.M006661200
  108. Zimmermann, H. (2009) Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal. 5, 273-275 https://doi.org/10.1007/s11302-009-9157-z
  109. Zylka, M. J., Sowa, N. A., Taylor-Blake, B., Twomey, M. A., Herrala, A., Voikar, V. and Vihko P. (2008) Prostatic acid phosphatase is an ectonucleotidase and suppresses pain by generating adenosine. Neuron 60, 111-122. https://doi.org/10.1016/j.neuron.2008.08.024

Cited by

  1. Immunotherapy for Prostate Cancer: Lessons from Responses to Tumor-Associated Antigens vol.5, 2014, https://doi.org/10.3389/fimmu.2014.00191
  2. Homotropic allostery of nucleotidase activity of human prostatic acid phosphatase vol.128, 2016, https://doi.org/10.1016/j.molcatb.2016.03.008
  3. Alumina nanoparticle-assisted enzyme refolding: A versatile methodology for proteins renaturation vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-01436-6
  4. Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells vol.38, pp.2, 2015, https://doi.org/10.14348/molcells.2015.2272
  5. Dietary cholesterol affects expression of prostatic acid phosphatase in reproductive organs of male rats vol.456, pp.1, 2015, https://doi.org/10.1016/j.bbrc.2014.11.100
  6. Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0133449
  7. Current and Emerging Immunotherapies for Castration-resistant Prostate Cancer vol.85, pp.5, 2015, https://doi.org/10.1016/j.urology.2014.12.029
  8. Identification of Novel Epigenetic Markers of Prostate Cancer by NotI-Microarray Analysis vol.2015, 2015, https://doi.org/10.1155/2015/241301
  9. Mass spectrometry based identification of galectin-3 interacting proteins potentially involved in lung melanoma metastasis 2017, https://doi.org/10.1039/C7MB00260B
  10. Variants in ACPP are associated with cerebrospinal fluid Prostatic Acid Phosphatase levels vol.17, pp.S3, 2016, https://doi.org/10.1186/s12864-016-2787-y
  11. Identification and Validation of Potential New Biomarkers for Prostate Cancer Diagnosis and Prognosis Using 2D-DIGE and MS vol.2015, 2015, https://doi.org/10.1155/2015/454256
  12. Ambient Ionization Mass Spectrometry Measurement of Aminotransferase Activity vol.28, pp.6, 2017, https://doi.org/10.1007/s13361-016-1591-x
  13. Investigation of Galectin-3 Function in the Reproductive Tract by Identification of Binding Ligands in Human Seminal Plasma vol.72, pp.4, 2014, https://doi.org/10.1111/aji.12273
  14. Activity-based probes as molecular tools for biomarker discovery vol.6, pp.4, 2015, https://doi.org/10.1039/C4MD00417E
  15. Seminal plasma enables selection and monitoring of active surveillance candidates using nuclear magnetic resonance-based metabolomics: A preliminary investigation 2017, https://doi.org/10.1016/j.prnil.2017.03.005
  16. Senescent Remodeling of the Innate and Adaptive Immune System in the Elderly Men with Prostate Cancer vol.2014, 2014, https://doi.org/10.1155/2014/478126
  17. Immunothérapie dans les cancers de la prostate vol.103, 2016, https://doi.org/10.1016/S0007-4551(16)30372-1
  18. Prostatic Acid Phosphatase (PAP) Predicts Prostate Cancer Progress in a Population-Based Study: The Renewal of PAP? vol.2019, pp.1875-8630, 2019, https://doi.org/10.1155/2019/7090545
  19. A Diagnostically Challenging Case of Metastatic Prostate Cancer to the Spine: A Reminder of the Usefulness of Serum PAP Measurement vol.44, pp.1, 2013, https://doi.org/10.4030/jjcs.44.126
  20. Label-Free Colorimetric Detection of Acid Phosphatase and Screening of Its Inhibitors Based on Biomimetic Oxidase Activity of MnO2 Nanosheets vol.6, pp.5, 2013, https://doi.org/10.1021/acsbiomaterials.0c00217
  21. Immunotherapy for Localized Prostate Cancer vol.47, pp.4, 2013, https://doi.org/10.1016/j.ucl.2020.07.008
  22. Immunotherapy of prostate cancer using novel synthetic DNA vaccines targeting multiple tumor antigens vol.12, pp.None, 2021, https://doi.org/10.18632/genesandcancer.214
  23. Evolution of Cancer Vaccines-Challenges, Achievements, and Future Directions vol.9, pp.5, 2013, https://doi.org/10.3390/vaccines9050535
  24. Multiplexed Prostate Cancer Companion Diagnostic Devices vol.21, pp.15, 2013, https://doi.org/10.3390/s21155023
  25. An RNA-Seq-Based Framework for Characterizing Canine Prostate Cancer and Prioritizing Clinically Relevant Biomarker Candidate Genes vol.22, pp.21, 2013, https://doi.org/10.3390/ijms222111481