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Abstract

In this paper, it will be assumed that there are two distinct populations which are
multivariate normal with equal covariance matrix. We also assume that the two popu-
lations are equally likely and the costs of misclassification are equal. The classification
rule depends on the situation whether the training samples include missing values or
not. We consider the conditional bootstrap confidence intervals for classification error
rate when a block of observation is missing.

Keywords: Block of observations missing, conditional bootstrap confidence interval,
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1. Introduction

In discriminant analysis the problem is to classify a p×1 observation X of unknown origin
to one of several distinct populations using an appropriate classification rule.

When there are two normal populations, the Bayes procedure classifies X into π1 if[
X−1

2

(
µ(1) + µ(2)

)]′
Σ−1

(
µ(1)−µ(2)

)
≥ 0, (1.1)

otherwise X is classified into π2. Then the optimal error rate is defined as

α=Φ (−4/2) , (1.2)

where 42=
(
µ(1)−µ(2)

) ′Σ−1
(
µ(1)−µ(2)

)
is the Mahalanobis squared distance between the

two populations, and Φ denotes the cumulative distribution function of the univariate stan-
dard normal distribution. Anderson (1951) suggested the method of simple substitution of
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X
(i)

for and µ(i) and the pooled sample covariance matrix S for Σ in (1.1), where X
(i)

and S are the usual unbiased estimators of µ(i), i = 1, 2, and Σ, respectively. The statistic

W =
[
X−(1/2)

(
X

(1)
+X

(2)
)]′

S−1
(
X

(1)−X(2)
)

is called Anderson’s classification statistic,

which is called W statistic. The error rate corresponding to this classification rule is called
the unconditional error rate, which is

γ=
1

2
[Pr (W < 0|X ∈ π1) +Pr (W ≥ 0|X ∈ π2)]

Since the exact expression for the unconditional error rate is very complicated, the condi-

tional error rate is considered by assuming, X
(1)
, X

(2)
and S fixed. The conditional prob-

ability of misclassifying an observation X from π1 into π2 by W is

P1 =Pr
(
W < 0|X(1)

, X
(2)
, S;X ∈ π1

)

=Φ


1
2

(
X

(1)
+X

(2)
)′
S−1

(
X

(1)−X(2)
)
−µ(1)

′

S−1
(
X

(1)−X(2)
)

√(
X

(1)−X(2)
)′
S−1ΣS−1

(
X

(1)−X(2)
)

 . (1.3)

Similarly the conditional probability of misclassifying an observation X from π2 into π1

by W is

P2 = Pr
(
W ≥ 0|X(1)

, X
(2)
, S;X ∈ π2

)

= Φ


− 1

2

(
X

(1)
+X

(2)
)′
S−1

(
X

(1)−X(2)
)

+µ(2)
′

S−1
(
X

(1)−X(2)
)

√(
X

(1)−X(2)
)′
S−1ΣS−1

(
X

(1)−X(2)
)

 . (1.4)

Hence the conditional error rate is

γ∗ =
1

2
(P1 + P2) (1.5)

Since these three error rates are all functions of unknown parameters, they need to be
estimated. The plug-in estimator (Fisher, 1936) is obtained by substituting unbiased esti-

mates, X
(1)
, X

(2)
and S for µ(1), µ(2) and Σ into (1.3) and (1.4), which is called D method.

Then the estimator for γ∗in (1.5) is given by

γ̂∗ = Φ(−4̂
2

), (1.6)

where 4̂2=
(
X

(1)−X(2)
)′
S−1

(
X

(1)−X(2)
)

is the sample analog Mahalanobis squared dis-

tance 42. We can obtain the same expression,

α̂ = Φ(−4̂
2

) (1.7)

by substituting the estimate 4̂ for 4 directly into the optimal error rate α in (1.2). Hence
this plug-in estimator can be used to estimate both the optimal error rate and conditional
error rate.
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2. Discriminant analysis with incomplete data

When the training samples contain incomplete observation vectors, there are several meth-
ods of dealing with missing values in discriminant analysis. One is to ignore these incomplete
observation vectors in the construction of a classification rule. But this method is usually
ineffective since information has been lost. Other methods (Chan and Dunn, 1972, 1974;
Anderson,1957; Twedt and Gill, 1992) incorporate these incomplete observation vectors in
the construction of the classification rule and the estimation of the error rate.

In this paper we consider a special pattern which contains a block of missing observations.
Instead of estimating the parameters, we construct two different discriminant functions from
the complete data and incomplete data, respectively, and then a linear combination of these
two linear discriminant functions is used to obtain the classification rule.

Let us partition the p× 1 observation X as follows.

X =

[
Y
Z

]
,

where Y is a k×1 vector and Z is a (p−k)×1 vector (1 ≤ k < p). Suppose random samples
of sizes mi, containing no missing values,

X
(i)
j =

[
Y

(i)
j

Z
(i)
j

]
, i = 1, 2; j = 1, 2, . . . ,mi,

are available from

Np

(
µ(i),Σ

)
=Np

([
µ

(i)
y

µ
(i)
z

]
,

[
Σyy Σzy
Σyz Σzz

])
,

and random samples of sizes ni−mi, which contain only the first k-components Y
(i)
j(k×1), i =

1, 2; j = mi + 1, · · · , ni, are available from Nk(µ
(i)
y ,Σyy). We denote by X

(i)
j , i = 1, 2; j =

1, · · · ,mi, the complete observations, and by Y
(i)
j , i = 1, 2; j = 1, · · · , ni, the incomplete

observations. Hence the data have the special pattern of missing values where a block of
variables is missing on observations, and the remaining observations are all complete. We
can construct two linear discriminant functions. The first linear discriminant function is
based on the observations, X

(i)
j , i = 1, 2; j = 1, · · · ,mi. We have

Wx = (X
(1)−X(2)

)′ S−1
xx [X−1

2
(X

(1)
+X

(2)
)], (2.1)

where

X
(i)

=
1

mi

mi∑
j=1

X
(i)
j =

[
Y

(i)

1

Z
(i)

]
,

Y
(i)
1 =

1

mi

mi∑
j=1

Y
(i)
j , Z

(i)
=

1

mi

mi∑
j=1

Z
(i)
j =

[
Y

(i)

1

Z
(i)

]
, i = 1, 2,
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Sxx =

2∑
i=1

mi∑
j=1

(
X

(i)
j −X

(i)
)(

X
(i)
j −X

(i)
)′
/νx, νx=m1+m2−2.

The second linear discriminant function is based on the incomplete observations, Y
(i)

j(k×1),
i = 1, 2; j = 1, · · · , ni. We have

Wy=
(
Y

(1)−Y (2)
)
′ S−1

yy [Y−1

2

(
Y

(1)
+Y

(2)
)

], (2.2)

where

Y
(i)

=
1

ni
[miY

(i)

1 + (ni −mi) Y
(i)

2 ],

Y
(i)

2 =
1

ni −mi

ni∑
j=mi+1

Y
(i)
j , i = 1, 2,

Syy =

2∑
i=1

ni∑
j=1

(
Y

(i)
j − Y (i)

)(
Y

(i)
j −Y

(i)
)′
/νy, νy = n1 + n2 − 2.

Now we combine the two linear discriminant functions and construct the classification rule
which is a linear combination of Wx and Wy, namely

Wc = cWx+(1− c)Wy, 0 ≤ c ≤ 1. (2.3)

We call this the linear combination classification statistic. An advantage of Wc is that it is
easy to use. The observation X is classified into π1 if Wc = cWx+(1−c)Wy ≥ 0; otherwise it is
classified into π2. This classification procedure is called the linear combination classification
procedure. This classification procedure depends on the value of c. The choice of c will be
discussed later.

Let Wx=a
′
X + b, where

a
′

(1×p)=
(
X

(1)−X(2)
)′
S−1
xx , b =

−1

2
(X

(1)−X(2)
)′ S−1

xx (X
(1)

+X
(2)

).

Also let Wy=d
′
Y + e, where

d
′
=
(
Y

(1)−Y (2)
)
′ S−1

yy , e=
−1

2

(
Y

(1)−Y (2)
)
′ S−1

yy

(
Y

(1)
+Y

(2)
)
.

Then

Wc= c
(
a
′

1Y+a
′

2Z + b
)

+ (1− c)
(
d
′
Y + e

)
=A

′
Y+B

′
Z + F = H

′
X + F,

where

A = ca1+ (1− c) d, B = ca2, F = cb+ (1− c)e, H =

[
A(k×1)

B(p−k)×1

]
.
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SinceWc = H
′
X+F is a linear combination of the random variable X givenX

(1)
, X

(2)
, Sxx,

Y
(1)

, Y
(2)
, Syy, and X is distributed as Np(µ

(i),Σ), Wc is distributed as N(H
′
µ(i)+F,

H
′
ΣH), for i = 1, 2. Therefore the conditional probability of misclassifying an observation

X from π1 into π2 by Wc is given by

β∗1=Φ

(
−H

′
µ(1)+F√
H ′ΣH

)
, (2.4)

and similarly we have

β∗2=Φ

(
H ′µ(2)+F√
H ′ΣH

)
(2.5)

Hence the conditional error rate, with equal prior probability, is defined as

β∗ =
1

2
(β∗1+β∗2). (2.6)

Using the linear combination classification statistic in (2.3), X is classified to π1 if Wc

> 0; otherwise it is classified to π2. Given the training samples, the conditional error rate
β∗depends on the value of c. The best value of c may be determined so that the conditional
error rate is minimized. However, the minimization process is very tedious and intractable.
Hence we propose to use the operational c∗ which is given by

c∗ =
( 1
m1

+ 1
m2

)
−1
D2

( 1
m1

+ 1
m2

)
−1
D2+( 1

m1
+ 1
m2

)
−1
D2
y

,

where D2=(X
(1)−X(2)

)′ S−1(X
(1)−X(2)

), D2
y=(Y

(1)−Y (2)
)′ S−1

y (Y
(1)−Y (2)

).
From the simulations, Chung and Han (2000) showed that the linear combination classifi-

cation is better than Anderson’s procedure (Anderson, 1957), the EM algorithm (Dempster
et al., 1977), and Hocking and Smith procedure (Hocking and Smith, 1968) as the proportion
of missing observation gets lager.

In this paper, we propose to construct confidence intervals of the error rates, β∗in (2.6)
using a bootstrap method. Bootstrap confidence intervals of those are compared to the
jackknife confidence interval derived by Dorvlo (1992). Then the real data sets illustrate the
application of the bootstrap method.

3. Conditional bootstrap confidence interval

The usual confidence intervals are based on an asymptotic approximation that can be
quite inaccurate in practice (see Buckland, 1983; Diciccio and Efron, 1996). However, the
bootstrap confidence intervals can be applied to more realistic situations.

In this Section, we consider the conditional bootstrap confidence interval for the condi-
tional error rate γ∗ in (1.5), when the data contain no missing values. Then the conditional
bootstrap confidence interval of the error rate will be extended to the case that the data con-
sist of missing observation in Section 4. Another method to construct a confidence interval
for γ∗ is conditional jackknife method which is described as follows.
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3.1. Conditional jackknife confidence interval

Dorvlo (1992) considered an interval estimator based on the jackknife method of estimating
the optimal error rate for W, when the training samples have no missing values. He proposed
the jackknife estimator α̂1 defined as

α̂1 = nf
(
β̂
)
− n− 1

n

n∑
j=1

f(β̂j), (3.1)

where
β̂ = X1 −X2,

β̂j =

{
X1j −X2, j = 1, · · · , n1,

X1 − X2j , j = n1+1, · · · , n,

X1j = (n1X1−Xj)/(n1−1), j = 1, · · · , n1,

X2j = (n2X2−Xj)/(n2−1), j = n1+1, · · · , n,

F (β̂) = [−1

2
(β̂
′
Σ−1β̂)

1
2
],

f(β̂j) = [−1

2
( β̂
′

jΣ
−1β̂j)

1
2
]], j = 1, · · · , n,

and Φ denotes the cumulative standard normal distribution. Here X1j (j = 1, · · · , n1) and
X2j (j = n1+1, · · · , n) denote the sample means obtained by deleting the j-th observation
(j = 1, · · · , n). Let S1j and S2j denote the corresponding covariance matrices based on
(n− 3) degrees of freedom, and S denotes the covariance matrix based on (n− 2) degrees of
freedom. Also let

α̂1j = nf(β̂)− (n− 1)f(β̂j), j = 1, · · · , n.

Then we can replace Σ−1 in the expression of f(β̂) and f(β̂j) by S−1and S−1
ij (i = 1, j =

1, · · · , n1; i = 2, j = n1 +1, · · · , n), respectively, since those tend to Σ−1 in the limit. Dorvlo
(1992) concluded that the interval estimate of α could be written asα̂1−tη/2

√∑n
j=1 (α̂1j−α̂1)

2

n(n− 1)
, α̂1+tη/2

√∑n
j=1 (α̂1j−α̂1)

2

n(n− 1)


where tη/2 denotes the 100(1-η/2) percentage point of the t-distribution with n− 1 degrees
of freedom.

3.2. Bootstrap confidence interval

(1) Unconditional bootstrap D-method

Fisher (1936) suggested the D method which is the simplest method for estimating the
conditional error rate, γ∗ in (1.5). An estimator γ̂∗ of the conditional error rate γ∗ in (1.5)
based on the bootstrap sample is obtained by D method.

Now we review the bootstrap confidence interval. An estimator α̂∗ of α based on the
bootstrap sample is obtained, and B estimates, α̂∗1,. . . , α̂∗B are calculated from the bootstrap
samples. Let the sample variance of the α̂∗i be s2

α. Then bootstrap confidence interval for
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α can be obtained from the B values of α̂∗. Let α̂∗(i) denote the i-th ordered value, so that

α̂∗(i) ≤ α̂
∗
(2) ≤ · · · ≤ α̂

∗
(B).

Three types of 100(1-2η)% confidence interval are presented in Efron (1982, 1987), Buck-
land (1983,1984,1985), Hall (1986a, 1986b), Hinkley (1988), DiCiccio and Romano (1988)
among others.

Percentile method. The confidence interval is given by (α̂∗(r), α̂
∗
(s)), where r = (B + 1)η and

s = (B + 1)(1− η) are both rounded to nearest integers subject to r + s = B + 1.

Bias-corrected percentile method. Suppose α̂∗(q) ≤ α̂ ≤ . . .≤ α̂∗(q+1), where α̂ is calculated

from the original samples. That is, q of the B bootstrap estimates for α are smaller than α̂.
Define z0=Φ−1(q/B), ηBL=Φ (2z0−zη) and , ηBR=Φ (2z0+zη) where Φ (zη) = 1−η and Φ
denotes the cumulative standard normal distribution. Then the confidence interval is given
by (α̂∗(j), α̂

∗
(k)), where j = (B + 1)ηBL and where k = (B + 1)ηBR.

Accelerated bias-corrected percentile method.

Define

ηAL=Φ(z0+
z0−zη

1− a (z0−zη)
), ηAR=Φ(z0+

z0+zη
1− a (z0+zη)

),

where

a =
1

6

 B∑
i=1

(α̂∗i−α̂
∗
)
3
/

[
B∑
i=1

(α̂∗i−α̂
∗
)
2

]3/2
 ,

which is called the acceleration constant, and α̂∗ is the mean of the B bootstrap estimates
for α̂∗i , i = 1, . . . , B. Then the confidence interval is given by (α̂∗(u), α̂

∗
(v)), where u = (B +

1)ηAL and v = (B + 1)ηAR. Note that ηAR and ηAL become ηBR and ηBL if a equals 0. If
z0 is zero, then ηBR and ηBL become η.

In order to evaluate the properties of the confidence interval for γ∗, a Monte Carlo study is
proposed. In this study, bivariate normal random deviates are generated from π1 : N(0, I),

and π2 : N
(

[4x, 0]
′
, I
)

by using subroutine in the International Mathematical and Statis-

tical Library (IMSL), where 42
x is the Mahalanobis distance. For each Monte Carlo study,

1,000 iterations will be obtained. In each iteration, B=10,000 bootstrap samples are gen-
erated. Then the bootstrap confidence intervals for γ∗ are obtained from the B values of
α̂∗ which is an estimator of γ∗ based on the bootstrap sample by D method which is sug-
gested by Fisher (1936). In order to construct the bootstrap confidence intervals for γ∗,
we apply Algorithm AS214 given in Buckland (1985). Then the coverage probability and
average length of the confidence intervals are computed. The average length is computed by
subtracting the average lower limit for the confidence interval of conditional error rate from
the average upper limit for it, whose average limit are obtained by taking average of the
1,000 lower limits and the 1,000 upper limits respectively. The coverage probability is also
considered from the 1,000 training samples, in which the conditional error rate is checked
whether it is between the lower limit and the upper limit for each training sample. The
coverage probability is obtained by dividing the number covered by both limits by 1,000.
The bootstrap confidence intervals are compared with the conditional jackknife confidence
interval given in Dorvlo (1992) based on the average length and coverage probability.
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(2) Conditional bootstrap confidence interval

The conditional distribution of W given X∈ π1 is normal with mean,[
µ(1)−1

2

(
X

(1)
+X

(2)
)]′

S−1
(
X

(1)−X(2)
)
,

and variance (X
(1)−X(2)

)′ S−1ΣS
−1

(X
(1)−X(2)

). Since the conditional distribution of W

involves unknown parameters, we may replace µ(1) and Σ by X
(1)

and S respectively.

So the conditional distribution of W given X
(1)
, X

(2)
, S and X∈ π1 is approximated by

N
(
4̂2/2, 4̂2

)
where 4̂2= (X

(1)−X(2)
)′ S

−1

(X
(1)−X(2)

). Similarly, the approximate con-

ditional distribution of W given X∈ π2 is N
(
−4̂

2
/2, 4̂2

)
.

We note that the usual bootstrap samples taken from the training samples are not ap-
propriate because each bootstrap sample gives different mean and covariance matrix that
changes the conditioning. Now, we obtain the conditional bootstrap samples of size n1, de-
noted by w1j , j = 1, 2, · · · , n1, from the conditional distribution, N(4̂2/2, 4̂2) when X
comes from π1. Let n∗1 be the number of negative w1j . Similarly, we can obtain the condi-
tional bootstrap samples of size n2, denoted by w2j , j = 1, 2, · · · , n2, from the distribution,

N(−4̂
2
/2, 4̂2) when X comes from π2. Then, we let n∗2 be the number of positive w2j . We

can construct the estimator ê of γ∗ from the conditional bootstrap samples, which is

ê=
1

2

(
n∗1
n1

+
n∗2
n2

)
, (3.2)

This process is repeated independently a large number of B times. Then the conditional
bootstrap confidence interval of γ∗ in(1.5) can be obtained from the B values of ê.
It is seen from Table 3.1 that the coverage probability for the conditional bootstrap confi-
dence interval is close to the stated confidence level, but those of the unconditional boot-
strap and jackknife confidence intervals are not. Hence we recommend to use the conditional
bootstrap confidence intervals. Among the conditional bootstrap methods we recommend
the bias-corrected percentile method to obtain the confidence interval for γ∗ in (1.5).

Table 3.1 Comparison of confidence intervals for γ∗

% p n1 γ∗ Method†
Average Averagee Average Coverage

Lower Limit eUpper Limit Length Prob.

7 2 15 0.1721

UNC

P 0.0583 0.1863 0.1010 54.2

B 0.1155 0.2198 0.1043 63.5

A 0.1191 0.2199 0.1008 63.2

CON

P 0.0850 0.2160 0.1310 70.1

B 0.0914 0.2244 0.1330 71.8

A 0.0902 0.2246 0.1344 72.3

J 0.0703 0.2078 0.1375 65.1

95 2 15 0.1721

UNC

P 0.0483 0.2339 0.1855 81.5

B 0.0735 0.2689 0.1954 88.5

A 0.0818 0.2693 0.1875 88.6

CON

P 0.0395 0.2848 0.2452 93.6

B 0.0445 0.2937 0.2492 95.1

A 0.0408 0.2948 0.2539 95.3

J 0.0207 0.2727 0.2520 88.1

UNC: unconditional bootstrap method, CON: conditional bootstrap method, P: percentile method,

B: bias-corrected percentile method, A: accelerated bias-corrected percentile method,

J: conditional jackknife method
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4. Conditional bootstrap confidence interval for missing values

We will extend the conditional bootstrap confidence interval for γ∗ to the case that the
training samples contain missing values. We will not consider the conditional jackknife con-
fidence interval in this case since the conditional jackknife method does not improve the
bootstrap method when training samples do not contain missing values. We will consider
the bootstrap confidence interval for the conditional error rate in (2.6) using Wc. The con-

ditional error rate can be estimated by substituting the estimates Σ̂, µ̂(i) for Σ, µ(i) in (2.4)

and (2.5), respectively. Let µ̂(i)=
[
Y

(i)
, Z

(i)
]′

be the estimate of µ(i) from (2.1) and (2.2).

For the covariance matrices, let

Σ̂(i)
xc =

[
Σ̂

(i)
yyc Σ̂

(i)
yzc

Σ̂
(i)
zyc Σ̂

(i)
zzc

]
be the estimate from the complete observations of sizes mi. Also let Σ̂

(i)
yyi be the estimate

from the incomplete observations of sizes ni-mi using only the Y observations, i = 1, 2. Then
we suggest the combined estimates,

Σ̂(i)=

[
mi
ni

Σ̂
(i)
yyc+

ni−mi
ni

Σ̂
(i)
yyi Σ̂

(i)
yzc

Σ̂
(i)
zyc Σ̂

(i)
zzc

]
,

for Σ(i), i = 1, 2.
Now the pooled estimate of the covariance matrices is given by

Σ̂ =
n1

n1+n2
Σ̂(1) +

n2

n1+n2
Σ̂(2).

We will use these estimates in the construction of the bootstrap confidence intervals for the
conditional error rate β∗ in (2/6) when the training samples contain missing observations.
Basically the same procedure described for γ∗ is applied in this situation for getting the
three types of the bootstrap confidence intervals for β∗, i.e., the percentile method, the
bias-corrected percentile method, and the accelerated bias-corrected method. In order to
evaluate the properties of the confidence intervals for β∗, we conduct a similar Monte Carlo
study described for the conditional error rate in (1.5).

Basically the same procedure described for γ∗ is applied in this situation for getting the
three types of the bootstrap confidence intervals for β∗. We generated bivariate normal

random deviates from π1: N(0, I) and π2 : N([4y, 4z]
′
, I) by using IMSL subroutines,

where 42
y and 42

z are Mahalanobis distance based on the variable Y and the variable Z
respectively. Note that

42
x=42

y +42
z for X =[X,Z]

′
, R =42

y /42
x, where 0 ≤ R ≤ 1.

For each Monte Carlo study, 1,000 iterations will be obtained. In each iteration, B=10,000
bootstrap samples are generated.

From the Table 4.1, we also recommend the conditional bootstrap confidence intervals
since the unconditional bootstrap confidence interval cannot control the confidence level.
Among the three conditional bootstrap methods we recommend the bias-corrected percentile
method to obtain the confidence interval for β∗ in (2.6).
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Table 4.1 Comparison of confidence intervals for β∗

% P k n m R 42
x β∗ Method†

Average Average Average Coverage

Lower Limit Upper Limit Length Prob.

70 2 1 15 10 0.8 4 0.1574

UNC

P 0.0725 0.1761 0.1036 45.8

B 0.1218 0.2256 0.1038 64.8

A 0.1295 0.2256 0.0961 63.9

CON

P 0.0911 0.2242 0.1332 68.9

B 0.0972 0.2324 0.1352 70.3

A 0.0968 0.2325 0.1357 70.2

95 2 1 15 10 0.8 4 0.1574

UNC

P 0.0346 0.2218 0.1872 72.3

B 0.0764 0.2716 0.1953 89.9

A 0.0829 0.2717 0.1888 89.7

CON

P 0.0437 0.2930 0.2493 92.3

B 0.0498 0.3021 0.2523 94.0

A 0.0476 0.3024 0.2547 94.0

UNC: unconditional bootstrap method, CON: conditional bootstrap method, P: percentile method,

B: bias-corrected percentile method, A: accelerated bias-corrected percentile method, J: conditional jackknife method

5. Numerical example

Application of the bootstrap method to estimate the error rate, β∗ in (2.5) is illustrated
by using real data sets. They are given by the Admissions Office at the University of Texas
at Arlington. The data sets contain two populations, which are shown in Table 5.1. One
population is the Success Group that the students receive their masters’s degree. The other
population is the Failure Group that they do not complete their master’s degree. For each
population, there are 10 foreign students and 10 United States students. Each foreign student
has 5 variables which are X1=undergraduate GPA, X2=GRE verbal, X3=GRE quantitative,
X4=GRE analytic, and X5=TOEFL score. For each United States student, one variable,
TOEFL score is missing.

Using this data set, we obtain the discriminant function Wc = cWx+(1− c)Wy, where

Wx = a
′
X + b, a

′
= [−1.9957− 0.0170− 0.00040.00340.0242], b = −2.5252,

Wy = d
′
X + e, d

′
= [0.5302− 0.0042− 0.00230.2406], e = 0.2846, c = 0.7532.

For this example, we generate 10,000 bootstrap samples to construct the conditional boot-
strap confidence interval for β∗. The result of using c∗ = 0.7532 is that the estimate of β∗ in
(2.6) is 0.4627. The 95% confidence interval of β∗ is (0.3500, 0.5750) which is obtained by
the bias-corrected percentile method.

Table 5.1 Success and failure group

Population 1 : Success Population 2 : Failure

X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

2.97
3.80
2.50
2.50
3.30
2.60
2.70
3.10
2.60
3.20
3.65
3.56
3.00
3.18
3.84
3.18
3.43
3.52
3.09
3.70

420
330
270
400
280
310
360
220
350
360
440
640
480
550
450
410
460
580
450
420

800
710
700
710
800
660
620
530
770
750
700
520
550
630
660
410
610
580
540
630

600
380
340
600
450
425
590
340
560
440
630
610
560
630
630
340
560
610
570
660

497
563
510
563
543
507
537
543
580
577

3.75
3.11
3.00
2.60
3.50
3.50
3.10
2.30
2.85
3.50
3.15
2.93
3.20
2.76
3.00
3.28
3.11
3.42
3.00
2.67

250
320
360
370
300
390
380
370
340
460
630
350
480
630
550
510
640
440
350
480

730
760
720
780
630
580
770
640
800
750
540
690
610
410
450
690
720
580
430
700

460
610
525
500
380
370
500
200
540
560
600
620
480
530
500
730
520
620
480
670

513
560
540
500
507
587
520
520
517
597

X1= Undergraduate GPA, X3= GRE Verbal, X3= GRE Quantitative, X4= GRE Analytic,

X5=TOEFL Score
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6. Conclusion

Discriminant analysis is a multivariate technique concerned with classifying a p × 1 ob-
servation X to one of several distinct populations using an appropriate classification rule.
The classification rule depends on the situation when the training samples include missing
values or not. In this paper, we consider the situation that the training samples contain
incomplete observation vectors which have a pattern of missing data; i.e., all missing values
occur on the same variables. In this situation, we use the discriminant function which is a
linear combination of two well defined Fisher’s linear discriminant functions. The perfor-
mance of a classification procedure is evaluated by its error rate which depends on unknown
parameters. For the situation, we consider the conditional bootstrap confidence interval for
the conditional error rate β∗ in (2.6) using Wc. We recommend the bias-corrected method.
A numerical example is given and it is shown that the linear combination classification
procedure is easy to use for the incomplete case.

References

Anderson, T. W. (1951). Classification by multivariate analysis. Psychometrika, 16, 31-50.
Anderson, T. W. (1957). Maximum likelihood estimates for a multivariate normal distribution when some

observations are missing. Journal of the American Statistical Association, 52, 200-203.
Anderson, T. W. (1984). An introduction to multivariate statistical analysis, John Wiley and Sons, New

York.
Buckland, S. T. (1983). Monte Carlo methods for confidence interval estimation using the bootstrap tech-

nique. Bias, 10,194-212.
Buckland, S. T. (1984). Monte Carlo confidence intervals. Biometrics, 40, 811-817.
Buckland, S. T. (1985). Calculation of Monte Carlo confidence intervals. Journal of the Royal Statistical

Society C, 297-301.
Chan, L. S. and Dunn, O. J. (1972). The treatment of missing values in discriminant analysis- 1. The

sampling experiment. Journal of the American Statistical Association, 67, 473-477.
Chan, L. S. and Dunn, O. J. (1974). A note on the asymptotical aspect of the treatment of missing values

in discriminant analysis. Journal of the American Statistical Association, 69, 672-673.
Chung, H. and Han, C. (2000). Discriminant analysis when a block of observations is missing. Annals of

the Institute of Statistical Mathematics, 52, 544-556.
Dempster, A. P., Laird, N. M. and Rubin, R. J. A. (1977). Maximum likelihood from incomplete data via

the EM algorithm. Journal of the Royal Statistical Society B, 39, 302-306.
Diciccio, T. J. and Efron, B. (1996). Bootstrap confidence intervals. Statistical Science, 11, 189-228.
DiCiccio, T. J. and Romano, J. P. (1988). A review of bootstrap confidence intervals. Journal of the Royal

Statistical Society B, 50, 338-354.
Dorvlo, A. S. S. (1992). An interval estimation of the probability of misclassification. Journal of Mathemat-

ical Analysis and Application, 171, 389-394.
Efron, B. (1982). The jackknife, the bootstrap, and other resampling plans, CBMS-NSF Regional Con-

ference Series in Applied Mathematics, 38, Society for Industrial and Applied Mathematics(SIAM),
Philadelphia.

Efron, B. (1987). Better bootstrap confidence intervals. Journal of the American Statistical Association,
82, 171-200.

Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7,
179-188.

Hall, P. (1986a). On the bootstrap and confidence intervals. Annals of Statistics, 14, 1431-1452.
Hall, P. (1986b). On the number of bootstrap simulations required to construct a confidence interval. Annals

of Statistics, 14, 1453-1462.
Hinkley, D. V. (1988). Bootstrap methods. Journal of the Royal Statistical Society B, 50, 321-337.
Hocking, R. R. and Smith, W. B. (1968). Estimation of parameters in the mutivariate normal distribution

with missing observation. Journal of the American Statistical Association, 63, 159-173.



200 Hie-Choon Chung · Chien-Pai Han

Johnson, R. A. and Wichern, D. W. (2002). Applied multivariate statistical analysis, Prentice Hall, New
Jersey.

Twedt, D. J. and Gill, D. S. (1992). Comparison of algorithm for replacing missing data in discriminant
analysis. Communications in Statistics-Theory and Methods, 21, 1567-1578.


