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Abstract
This paper deals with the relative efficiency of two kernel estimators f̂n and ĝn by using spherical data, as

proposed by Park (2012), and Bai et al. (1988), respectively. For this, we suggest the computing flows for the
relative efficiency on the 2-dimensional unit sphere. An evaluation procedure between two estimators (given the
same kernels) is also illustrated through the observed data on normals to the orbital planes of long-period comets.

Keywords: Exponential kernel estimator, relative efficiency, orbital planes of long-period comets.

1. Introduction

Suppose that i.i.d. random variables X1, . . . , Xn have a probability density function f on S2 with
respect to dVg, which is a volume element of associated with the Riemannian metric g. Then the
kernel estimator of f (p) based on X1, . . . , Xn is of the form

f̂n(p) =
1

nh2Ch

n∑
i=1

K
(

1
h

exp−1
p Xi

)
, p ∈ S2, (1.1)

where Ch is the positive constant and h is the smoothing parameter such that

h2Ch =

∫
S2

K
(

1
h

exp−1
p x

)
dVg(p). (1.2)

The integral of (1.2) is independent of x and Ch/ω1 → 1 as h → 0, where ω1 is an area of the
surface of the unit sphere (see Section 2, Park, 2012). The kernel function in (1.1) is defined on
the tangent space Tp(S2) such that

∫
Tp(S2) K(v)dv = 1. Usually K is taken as a radially symmetric

unimodal probability function in the case of the m-dimensional Euclidean space. Hence we may
choose K(v) = T (< v, v >1/2

p ) for v ∈ Tp(S2) in the estimator (1.1), where < · , · >p is the inner product
with respect to the metric g, such that for some constant c > 0 and l = 1, 2, as h→ 0,∫ ∞

c
h

T l(y)yk+1dy = o(hα), for k = 1, 2, . . . and α = 1, 2, . . . .

The motive we consider the kernel estimator (1.1) is that not all procedures used in the Euclidean
space can be properly translated when considering the statistical problem of estimating a density func-
tion defined on the non-Euclidean space. To solve this problem, the exponential map for connecting
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the 2-dimensional unit sphere S2 valued random sample Xi with the argument in the kernel function
defined on the tangent space Tp(S2) is considered. The exponential map, expp : Tp(S2) → S2, is
defined by expp ξ = γξ(1), where γξ(t) = expp tξ is the geodesic through p ∈ S2 at t = 0 with
dγξ/dt |t=0 = ξ ∈ Tp(S2). See Figure 1, p.3 in Park (2012) for more details of the exponential map.

Explicit computations of the inverse exponential map on the estimator (1.1) are as follows: For
any pair (ξ1, ξ2) of orthonormal vectors where ξ1 ∈ S2 and Tξ1 = {ξ2 ∈ S2|ξ1⊥ξ2}, we consider a curve
γξ : Tξ1 × [0, π)→ S2 given by

γξ(t) = ξ1 cos(t) + ξ2 sin(t). (1.3)

Here γξ is a great circle of S2 passing through the points ξ1 and ξ2, i.e., γξ is a geodesic on S2. Then an
inverse parametrization can be deduced from (1.3) for which γ−1

ξ : S2\{ξ1,−ξ1} → Tξ1 × [0, π] would
be an inverse exponential map. Let p ∈ S2 and v ∈ Tp(S2) be given. It is obvious that p ⊥ v. Putting
ξ1 = p and ξ2 = v/∥v∥, the curve γv(t) = p cos ||v||t + (v/||v||) sin ||v||t is the geodesic passing through p
tangent to γ̇v(0) = v. Hence the exponential map of Tp(S2)→ S2 is given by

expp v = p cos ||v|| + v
||v|| sin ||v||. (1.4)

Here the distance from p to expp v is d(p, expp v) = ∥v∥. For p ∈ S2, we have Dp = {v ∈ Tp(S2) :
∥v∥ < π} and expp(Dp) = S2 \ {−p}, where the cut locus is reduced to the single point, cut(p) = {−p}.
By (1.4) and d(p, expp v) = ||v||, the inverse exponential map, exp−1

p : S2 → Tp(S2) is given by

exp−1
p x = cos−1

(
pt x

)
ξ, (1.5)

where ξ is an unit tangent vector orthogonal to p. Submitting (1.5) into (1.1), we obtain (1.6) and
(1.7) as follows.

f̂n(p) =
1

nh2Ch

n∑
i=1

K
(

1
h

cos−1
(
ptXi

)
ξi

)
, (1.6)

where ξi is an unit tangent vector orthogonal to p, and Ch is the positive normalized constant such that

h2Ch =

∫
S2

K
(

1
h

cos−1
(
pt x

)
ξ

)
dVg(p). (1.7)

In this paper, the problem of evaluating relative efficiency between the kernel estimators is in-
vestigated. For this, we first refer to the kernel estimator in order to make an evaluation of relative
efficiency as follows. Given i.i.d. random variables X1, X2, . . . , Xn with unknown density f on the
2-dimensional unit sphere S2, the kernel estimator of Bai et al. (1988) is, for a kernel function L and
the smoothing parameter λ,

ĝn(x) = n−1d0(λ)
n∑

i=1

L
(
λ
(
1 − xtXi

))
, (1.8)

where d0(λ) is selected so that ĝn(x) integrates to unity. When x is close to Xi, (1 − xtXi) is close
to zero, and also exp−1

p Xi is close to zero. Actually, the estimators in (1.1) and (1.8) have the same
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characteristics and different kernels are not called for as note in Hall et al. (1987). In addition, we can
check that the estimator of type (1.1) has identical first-order asymptotics (see Lemmas in Appendix).

We focus on two points in this paper. First, we aim for an evaluation of the asymptotic relative
efficiency (ARE) of the kernel estimator (1.1) on 2-dimensional unit sphere as follows.

Theorem 1. When f is 2-times differentiable, the asymptotic relative efficiency (ARE) of ĝn with
respect to f̂n is given by

ARE
(
ĝn; f̂n

)
=

C1

(
C1
2C2

)− 1
3
+C2

(
C1
2C2

) 2
3

D1

(
D1

2D2

)− 1
3
+ D2

(
D1

2D2

) 2
3

, (1.9)

where

C1 = π

∫ ∞

0
T 2(s)sds, C2 =

(
π

4Ch

∫ ∞

0
T (s)s3ds

)2 ∫
S2

(∆ f (p))2dVg(p),

D1 =
πλα2(T )
nc(λ)−2 , D2 =

(∫
Tx

D2
ξgξ(x)dµ1(ξ)

)2

· α1(T )2, (1.10)

where C(λ; T ) =
√
π/(2!λ2α0(T )), α0(T ) =

∫ ∞
0 T (s)s ds, Ds

ξgξ = DξDs−1
ξ gξ, α1(T ) =

∫ ∞
0 T (s)s3ds,

α2(T ) =
∫ ∞

0 T (s2)s ds, gξ(x) = gξ(x/||x||), Tx = {ξ ∈ S2 : ξ⊥x}, c(λ)−1 = λ−2ω1α0(T ), and ∆ is
Laplace-Beltrami operator.

In addition, we focus on the computing procedure for the evaluation of the relative efficiency by
using spherical data on the 2-dimensional unit sphere. Finally, a short discussion related to comparing
the relative efficiency is made.

2. Numerical Study for Evaluating the ARE

The relative efficiency of the kernel estimator (1.1) to those of the estimator (1.8) is of good interest.
Using the results of Lemmas in Appendix, the relative efficiencies of the estimator (1.1) to those of
the estimator (1.8) are immediate. Hence we omit the proof of Theorem 1. See Lemmas in Appendix.
To make the numerical illustration of the relative efficiencies between these estimators, we introduce
an example on S2 to evaluate the values of the constants.

2.1. Simulation procedure

For computing of ARE (1.9), finite sample sizes, n = 10, 30, 50, 70, 100, 300, and 1000 are investi-
gated as follows. The most widely referred distribution for directional data is the von Mises-Fisher
distribution such that

f (s, ϕ) =
κ

2π sinh κ
exp

[
κ(sin s sinα cos(ϕ − β) + cos s cosα)

]
,

where 0 ≤ s < π, 0 ≤ ϕ < 2π. There are three parameters α, β, and κ. We generate pseudo-random
variates from the von Mises-Fisher distribution with parameters vMF(α, β, κ) as suggested in Fisher et
al. (1993, p.59). Given the random variables (X, Y) and angle Φ ∈ [0, π) with an Uniform distribution,
the curve through (X,Y) is determined by Φ and S = X cosΦ + Y sinΦ.
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Figure 1: Plotting for the spherical data points on the surface of S2

We provide here a brief discussion of the computation for the four constants in Theorem 1. We
first start by assuming that the generated points occur according to the distribution f . The kernel used
in simulation procedure is T (v) = e−<v,v>1/2

; −∞ < v < ∞. Using the kernel and the four constants
discussed in Theorem 1, we compute the value of ARE (1.9). These integrals are approximated
by use of numerical integration. We consider that any point S2 can be parameterized by x(θ, ϕ) =
(sin θ cos ϕ, sin θ sin ϕ, cos θ), θ ∈ [0, π), ϕ ∈ [0, 2π) and find vector points on tangent space. We can
choose a large number N instead of infinity, and use the geodesic spherical coordinates, given by
y(t, ξ) = expp(tξ) for computing C1 and C2. Then we have that∫

S2
(∆ f (p))2dVg(p) =

∫
Ep

∫
(−1,1)

D2
ξ f (y(hs, ξ))dsdµp(ξ), (2.1)

where Ep = {ξ ∈ Tp(S2)||ξ| = 1}. Details are in Park (2012, Appendix A.1 and Lemma A.1–A.2).
Algorithm flows for the computation of the ARE are created in the following way.

1. Generate an data point (X, Y) and Φ from Uniform distribution such that X ∼ U(−π, π), Y ∼
U(0, π), and Φ ∼ U(0, 2π), and take a surface data (S ,Φ).

2. Build the tangent vector vi, corresponding to the data point xi = (si, ϕi), i = 1, . . . , n using by (1.5)
for any p ∈ S2.

3. Compute the four constants C1,C2,D1, and D2.

4. Define a kernel function on the tangent space and choose the optimal smoothing parameters
hAMIS E = ( fC1/(nC2))1/3 that minimizes the Asymptotic Mean Integrated Square Error (AMISE)
from Lemma 1 in Appendix, where C1 and C2 are in (1.10).

5. Substituting the optimal smoothing parameter into AMISE( f̂n), and compute the constants of (1.9).

The above algorithm is implemented in R environment system in the CRAN (http://cran.R-project.org)
while others will be approximated by use of numerical integration where MATLAB-program pro-
ceeds.

2.2. Spherical data

Observations on normals to the orbital planes of long-period comets with sample sizes n = 240 are
from Fisher et al. (1993, pp. 160–161). Figure 1 shows a display of the data to 240 cometary orbits,
which are only dispersed on the upper hemisphere (see Bowman and Azzalini, 1997, pp. 12–14).
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Figure 2: Plotting for the vector points on the tangent space Tp(S2). Plot on (a), (b), (c) and (d) are the tangent
vectors v when p = (0, 0, 1), p = (0, 1, 0), p = (0, 0,−1) and p = (0,−1, 0), respectively.

-1
 0

1

xi
-1

 0

1

yi

 0
0
.1

0
.2

0
.3

0
.4

0
.5

D
e
n
s
it
y
 f
u
n
c
ti
o
n

Figure 3: Perspective plot for the spherical data. Vertical axis is proportional to f̂ , discs in horizontal plane
represent the equal-area projection of the unit sphere.

For each comet, the observations are measured as the angle of latitude and longitude. “Theta” and
“Phi” denoted in Figure 1 are the vertical and horizontal rotation of the displayed sphere, respectively.
For given data point xi, i = 1, . . . , 240, we can find the tangent vectors vi corresponding to xi by using
(1.4) for each p ∈ S2. Figure 2 shows a display of the tangent vector points vi, i = 1, . . . , 240, on the
tangent space, for example p = (0, 0, 1), p = (0, 1, 0), p = (0, 0,−1) and p = (0, 0,−1), respectively.

We employ the estimator f̂n(p) with the kernel K(v) = e−v for v ∈ Tp(S2). The smoothing param-
eter formula used in this spherical data is given by h = minh AMISE( f̂n) = ( fC1/(nC2))1/3. Figure
3 depicts the perspective plot. For visualization we use an equal-area projection method of the unit
sphere into a disc of radius 2 (see Watson, 1983, p.21).
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Table 1: The AREs from the kernel estimator f̂n over ĝn using the kernel e−t with the sample sizes n = 10, 30,
50, 70, 100, 300, 1000 and with given the parameter vMF(0.02, 0.13, 1.35).

Sample size n ARE(ĝn; f̂n) vMF(α̂, β̂, κ̂)
10 2.987067 (0.963, 1.761, 5.482)
30 1.236650 (0.241, 0.911, 2.140)
50 1.076593 (0.117, 0.346, 1.891)
70 1.019220 (0.089, 0.294, 1.806)
100 1.002381 (0.042, 0.174, 1.474)
300 1.000298 (0.026, 0.137, 1.361)

1000 1.000017 (0.020, 0.131, 1.352)

3. Conclusion

We present the point of assessing the adequacy of fit of this distribution to the spherical data. First,
since we show the graphical display which permit a general assessment of the plausibility of the
distribution from Figure 3, the next step comprises a significance test companion to the graphical
procedures (i.e. Q-Q plots). A restriction on the use of these methods is that they are based on
approximations which are only valid if κ exceeds 5. However, in many data, κ will not have such
a high value. With the references Fisher et al. (1993), Section 5.3.2(p.129) and Dhillon and Sra
(2003), Section 5.2, we deal with estimating parameters of the vMF(α, β, κ) distribution. The results
are summarized in Table 1 according to the random samples with given α̂ = 0.02, β̂ = 0.14, κ̂ =
1.35, which are given by using an EM-algorithm that proceeds by iterative updates to estimate the
parameters of the vMF distribution on the orbital comets data. Details for the parameter estimation
are in Fisher et al. (1993), pp. 129–131, and Dhillon and Sra (2003), Table 1 in Section 5.2.1. Thereby
since κ̂ < 5, we have the value of test statistics R = 0.712 for mean direction using the percentage
points of test criterion statistics for the vMF distribution in Fisher et al., Appendix A, p.266. So, for
test of κ = κ0 against κ , κ0, the significane probability is about 5% and there are some grounds to
accepte the null hypothesis.

The simulation result is given by the following Table, respectively. The resulting values of C1,
C2, D1, and D2 are substituted in the equation for the ARE in (1.9). The ARE values are tabulated in
Table 1. From the results with the kernel e−t, we see that the ARE(ĝn; f̂n) converges to 1. It is clear
from the ARE of (1.9) that limn→∞ ARE → 1 for the kernels. Besides, according to the first term of
the bias in Lemma 1 of Appendix, we can find that the estimator f̂n(p) is asymptotically unbiased as
h→ 0.

Recently, the statistical methods by using geometric specifications of a space (i.e. Lie group) have
been used for image processing (for example, astrophysics, Mean Shift Techniques and Coordinate
Measuring Machine). See Fletcher et al. (2003) and Kim and Park (2012). The comparison of the
ARE of the estimators employed in this paper is motivated by the applications of those. Therefore
we show that the relative efficiencies of the kernel estimator is useful when comparing those of the
existing estimator (1.8). Although real data with which to demonstrate the ARE is unavailable to us at
nonparametric approaches, our example for simulation data would be of significant benefit in practice.

Appendix: Asymptotic Behavior of the Bias and Variance

We describe the asymptotic formula of the bias and variance of the kernel estimator defined by (1.1)
of the Introduction, which have been proposed by Park (2012). From (A.3) and (A.4), note that the
asymptotic rate of convergence for the bias and variance of ĝn(x) in Lemma 2 is analogous to that
of Lemma 1. While the sectional curvature κ cannot be found in Lemma 2, the result of Lemma 1
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contains it. Noted that various geometric information (i.e. components of curvature tensor or covariant
derivatives) will occur in asymptotic expansions of the proposed kernel density estimator according
to another geometric structure of a space.

Lemma 1. Assume that the unknown density f is bounded and continuously four times differentiable.
Then we have the bias and variance of the proposed kernel estimator for κ = 1 as follows:

Bias
(

f̂n(p)
)
=

Vol(Ep)
4
∆ f (p)

∫ ∞

0
T (s)s3ds

h2

Ch

+

Vol(Ep)
192

−4κ∆ f (p) + 3
2∑

i, j=1

∇4
i ji j f (p)

 ×
∫ ∞

0
T (s)s5ds

 h4

Ch

+ o
(

h4

Ch

)
as h→ 0, (A.1)

Var
(

f̂n(p)
)
=

Vol(Ep)
nh2

∫ ∞

0
T 2(s)sds f (p) +

{
1
4

(
∆ f (p) − 2κ

1
3

f (p)
) ∫ ∞

0
T 2(s)s3ds

}
h2

C2
h

+
1

192

190
15

κ2 f (p) − 4κ∆ f (p) + 3
2∑

i, j=1

∇4
i ji j f (p)

 h4

C2
h

×
∫ ∞

0
T 2(s)s5ds

 − 1
n

f 2(p)

− 1
n

{
Vol(Ep)

2
f (p)∆ f (p)

∫ ∞

0
T 2(s)s3ds

}
h2

Ch

+ o
((

nC2
hh−2

)−1
+

(
nChh−2

)−1
)

as nh2 → ∞, h→ 0, (A.2)

where ∆ is Laplace-Beltrami operator, and ∇4
i ji j f (p) = ∂4/(∂xi∂x j∂xi∂x j) f (p).

For comparing the behaviors of the bias and variance in Lemma 1, we give the asymptotic expan-
sions of the bias and variance of ĝn(x) in the following lemma.

Lemma 2. Assume that all derivatives of g are well defined and continuous. For random variables
X1, X2, . . . , Xn taking values on m-dimensional unit sphere, we have the asymptotic behavior of bias
and variance of kernel estimator (1.8) as follows:

Bias (ĝn(x)) =
λ−2

2α0(T )

∫
Tx

D2
ξg(x)dµ1(ξ)

∫ ∞

0
T (s)s3ds

+
λ−4

24α0(T )

{
− 22

30

∫
Tx

D2
ξg(x)dµ1(ξ) +

1
3

∫
Tx

D4
ξg(x)dµ1(ξ)

}
×

∫ ∞

0
T (s)s5ds

+ o
(
λ−4

α0(T )

)
, as λ→ ∞, (A.3)

Var (ĝn(x)) =
λ2ω1

n

[
1

c(λ)−2

∫ ∞

0
T 2(s)sds · g(x) +

c(λ)2

λ2

{∫
Tx

D2
ξg(x)dµ1(ξ) − 1

2
g(x)

}∫ ∞

0
T 2(s)s3ds

+
c(λ)2

λ4

{
1
3

∫
Tx

D2
ξg(x)dµ1(ξ) +

∫
Tx

D4
ξg(x)dµ1(ξ)

− 22
(24 × 30)

∫
Tx

D2
ξg(x)dµ1(ξ) · g(x)

}∫ ∞

0
T 2(s)s5ds

]
− 1

n
g2(x)
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− ω1c(λ)
nλ2

{
g(x)

∫
Tx

D2
ξg(x)dµ1(ξ)

∫ ∞

0
T 2(s)s3ds

}
+ o

(
c(λ)2

nλ2 +
c(λ)
nλ2

)
,

as nλ2 → ∞, λ→ ∞, (A.4)

where α0(T ) =
∫ ∞

0 T (s)sds, Ds
ξg = DξDs−1

ξ g, g(x) = g(x/||x||), Tx = {ξ ∈ S2 : ξ⊥x}, c(λ)−1 =

λ−2ω1α0(T ), and ω1 = µ1(S2), where µ1 is a Lebesgue measure of the unit sphere.
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