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Abstract
We propose a version of Cook’s distance (called local distance) in the multivariate linear model. The pro-

posed version is a matrix, while the existing version of Cook’s distance (called global distance) is a scalar. The
existing Cook’s distance is the trace of the proposed Cook’s distance. In addition, we argue that the proposed
Cook’s distance has a more natural extension of the Cook’s distance in the univariate linear model than the
existing Cook’s distance. An illustrative example based on a real data set is given.
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1. Introduction

Most research on regression diagnostics are done for statistical models with one-dimensional response
(univariate models); however, studies on multivariate regression diagnostics are relatively limited.

For the influence measures in the multivariate linear model, Caroni (1987) investigated a Studen-
tized residual and suggested a version of Cook’s distance (Cook, 1977) based on a confidence ellipsoid
analogue. Altunkaynak and Ekni (2002) suggested a useful algorithm to compute the Cook’s distance
suggested by Caroni (1987). In addition, Diaz-Garcia et al. (2003) extended the concept of local in-
fluence (Cook, 1986) and likelihood displacement (Cook et al., 1988) in the univariate linear model to
the multivariate linear model. However, Tang and Fung (1997) considered case-deletion diagnostics
for test statistics and Fung (1999) studied outlier diagnostics in several multivariate samples. For the
diagnostics in the repeated measures or the longitudinal data, Preisser and Qaqish (1996) proposed
deletion diagnostics for generalized estimating equations, Banerjee and Frees (1997) suggested in-
fluence diagnostics for linear longitudinal models, and Lindsey and Lindsey (2000) suggested some
diagnostic tools for random effects in the repeated measures growth curve model.

In this paper, we suggest a new version of Cook’s distance in the multivariate model. First, we
mention the misleading aspect of the existing Cook’s distance. The existing Cook’s distance of the ith

observation on the estimator of regression coefficient matrix is a scalar; however, the proposed Cook’s
distance in this thesis is a matrix that simultaneously reveals the influence of multiple outputs. We
show that the existing version is sum of diagonal elements of the suggested version; therefore, the
suggested version contains more diagnostic information than the existing version. In addition, this
feature is demonstrated through numerical studies.
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2. Multivariate Linear Model

Consider a multivariate linear model

Y = XB + U, (2.1)

where Y is n×q response matrix, X is n×p design matrix, B is unknown p×q regression coefficient ma-
trix, and U is n×q error matrix. Specifically let yi = (yi1, yi2, . . . , yiq)′, xi = (1, xi1, xi2, . . . , xi,p−1)′, ui =

(ui1, ui2, . . . , uiq)′, i = 1, 2, . . . , n be the ith row of Y, X,U, respectively, and let βi = (βi1, βi2, . . . , βiq)′,
i = 1, 2, . . . , p be the ith row of B. It is usually assumed that y1, y2, . . . , yn are independent, and
E[ui] = 0 and Cov(ui) = Σ for all i = 1, 2, . . . , n, where Σ is a q × q variance-covariance matrix of the
random vector ui, and has σi j as its i jth component. The goal is to suggest a new version of Cook’s
distance and comparing with the existing ones, so that we restrict our attention to the assumption of
Cov(ui) = Σ for all i = 1, 2, . . . , n. For more general cases, see Preisser and Qaqish (1996), Banerjee
and Frees (1997), and Lindsey and Lindsey (2000) among others.

If X′X is non-singular, then the least squares estimator of the regression coefficient matrix B is
given by

B̂ = (X′X)−1X′Y.

The fitted matrix can be expressed as Ŷ = HY, where H = X(X′X)−1X′ is the hat matrix with
hi j = x′i(X′X)−1x j as the i j th component of H. Using this notation, the residual matrix is defined
as E = Y − Ŷ, and let E = (e1, . . . , en)′, where e′i , the ith row of E, is the ith residual vector. As an
unbiased estimator of Σ, Σ̂ = E′E/(n − p) is often used.

2.1. Existing version of Cook’s distance CG
i

In the multivariate linear model E(Y) = XB, Cook’s distance of the ith observation on the estimator
of the regression coefficient matrix B is based on B̂ − B̂(i), where B̂(i) is the least squares estimator of
B based on n − 1 observations after deleting the ith observation (xi, yi). Note that B̂ − B̂(i) is a p × q
matrix, it is not straightforward to normalize to a scalar. To overcome this situation, by using the vec
operation the multivariate linear model in (2.1) can be reexpressed as

vec(Y) =
(
Iq ⊗ X

)
vec(B) + vec(U).

Using this notation, Caroni (1987) and Diaz-Garcia et al. (2003) suggested a version of Cook’s dis-
tance in the multivariate linear model as

CG
i =

1
p

[
vec

(
B̂ − B̂(i)

)′ (
Cov

(
vec

(
B̂
)))−1

vec
(
B̂ − B̂(i)

)]
.

Here we call CG
i a global distance, because it does not distinguish q multiple outputs (yi1, yi2, . . . , yiq),

but it computes the effect of q multiple outputs simultaneously. That is to say, CG
i renders one scalar

value as influence of q multiple outputs.
To express CG

i as a function of basic building blocks, we note that Cov(vec(B̂)) = Σ ⊗ (X′X)−1

and

B̂ − B̂(i) =
(X′X)−1xie′i

1 − hii
. (2.2)
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In addition, if we use (
vec(Z′)

)′ (A ⊗ B′) vec(Z) = tr(AZ′BZ) (2.3)

then, we have

CG
i =

1
p

hii

1 − hii

e′i Σ̂
−1ei

1 − hii
. (2.4)

This equation also can be expressed as

CG
i =

1
p

r2
i hii

1 − hii
,

where

r2
i =

e′iΣ̂
−1ei

1 − hii

is a version of studentized residual in the multivariate model.
For the influence of a set of observations, let K = {i1, i2, . . . , ik} be an index set containing k sets.

Then the influential set version of the Cook’s distance considered above is

CG
K =

1
p

{
vec

(
B̂ − B̂(K)

)′ [
Σ−1 ⊗ (X′X)

]
vec

(
B̂ − B̂(K)

)}
.

To express CG
K as a function of basic building blocks we first note that

B̂ − B̂(K) =
(
X′X

)−1 X′K (I − HK)−1 eK ,

where XK = (xi1 , xi2 , . . . , xik ) is k × p matrix, eK = (ei1 , ei2 , . . . , eik ) is k × q matrix, and HK =

XK(X′X)−1X′K . Then, by (2.3),

CG
K =

1
p

{
vec

(
B̂ − B̂(K)

)′ [
Σ−1 ⊗ (X′X)

]
vec

(
B̂ − B̂(K)

)}
=

1
p

tr
((

B̂ − B̂(K)

)′
X′X

(
B̂ − B̂(K)

)
Σ−1

)
=

1
p

tr
(
e′K (I − HK)−1 HK (I − HK)−1 eKΣ̂

−1
)
.

2.2. A proposed version of Cook’s distance CL
i

Recall that Cook’s distance for the ith observation in the univariate linear model can be written as

Di =
1
p

(
β̂ − β̂(i)

)′
Cov

(
β̂
)−1 (
β̂ − β̂(i)

)
=

1
p

(
β̂ − β̂(i)

)′
σ−2 (

X′X
) (
β̂ − β̂(i)

)
=

1
p

(
β̂ − β̂(i)

)′
σ

(
X′X

) (
β̂ − β̂(i)

)
σ

,
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which motivates Cook’s distance in the multivariate linear model as

CL
i =

1
p
Σ̂
− 1

2
(
B̂ − B̂(i)

)′ (
X′X

) (
B̂ − B̂(i)

)
Σ̂
− 1

2 .

If we use B̂ − B̂(i) = (X′X)−1xie′i/(1 − hii), then we can express CL
i as basic building blocks, i.e.,

CL
i =

1
p
Σ̂
− 1

2
eix′i(X′X)−1

1 − hii
(X′X)

(X′X)−1xie′i
1 − hii

Σ̂
− 1

2

=
1
p

hii

(1 − hii)2 Σ̂
− 1

2 eie′iΣ̂
− 1

2 ,

where ei = yi − x′i B̂ and hii = x′i(X′X)−1xi. Note that CL
i is not scalar but a q × q matrix. In addition,

it is clear that tr(CL
i ) = CG

i .

2.3. Remarks on local influence and global influence

There is a serious disadvantage in CG
i . Note that some of the diagonal elements of the local distance CL

i
could be small or large, and therefore, CG

i may not reveal the actual influence of the ith observation. For
example, CG

i = 2.0 is due to either CL
i (1, 1) = 1.0, CL

i (2, 2) = 1.0 or CL
i (1, 1) = 1.9, CL

i (2, 2) = 0.1.
Hence, CL

i is more informative measure than CG
i to represent actual influence of the ith observation.

To see further relations between CL
i and CG

i , note that e′iΣ̂
−1ei in CG

i is replaced by Σ̂
−1/2eie′i Σ̂

−1/2

in CL
i . To compare these two terms we assume, for simplicity, that q = 2 and correlation between yi1

and yi2 is close to zero. Then, e′i Σ̂
−1ei ≃ e2

i1/σ̂
2
1 + e2

i2/σ̂
2
2, but

Σ̂
− 1

2 eie′iΣ̂
− 1

2 ≃


e2

i1

σ̂2
1

ei1ei2

σ̂1σ̂2

ei1ei2

σ̂1σ̂2

e2
i2

σ̂2
2

 .
Therefore, if we assume weak correlations between responses, we may say that the jth diagonal ele-
ment CL

i ( j j) represents the influence of yi j and xi on B̂. Of course, if q responses are highly correlated,
then interpretations on each component of CL

i will be very complicated. Hence, CL
i can be called the

local distance representing the influence of each response separately for the ith observation. On the
other hand, CG

i , sum of diagonal elements of CL
i , can be called the global distance representing the

influence of all the q responses simultaneously for the ith observation.
We can easily extend CL

i to CL
K , local Cook’s distance for the set of observations in K = (i1, i2, . . . ,

ik), i.e.,

CL
K =

1
p
Σ̂
− 1

2
(
B̂ − B̂(K)

)′ (
X′X

) (
B̂ − B̂(K)

)
Σ̂
− 1

2 . (2.5)

To express CL
K as a function of basic building blocks, we use

B̂ − B̂(K) =
(
X′X

)−1 X′K (I − HK)−1 eK .

Then the local Cook’s distance for the set of observations in K can be reexpressed as

CL
K =

1
p
Σ̂
− 1

2 e′K (I − HK)−1 HK (I − HK)−1 eKΣ̂
− 1

2 . (2.6)
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Table 1: Two versions of Cook’s distance CG
K and CL

K when K = {i} in the automobile tire data.
K CL

K CG
K

1 0.317 0.093 0.3440.093 0.027

2 0.247 −0.330 0.688−0.330 0.441

3 0.303 −0.073 0.321−0.073 0.018

4 0.067 0.066 0.1310.066 0.064

5 0.024 −0.081 0.298−0.081 0.274

6 0.132 −0.066 0.165−0.066 0.033

7 0.010 0.109 1.1960.109 1.186

8 0.010 −0.025 0.073−0.025 0.063

9 0.704 −0.785 1.580−0.785 0.876

10 0.038 0.037 0.0730.037 0.035

Table 2: Five largest Cook’s distances for CG
K and CL

K when K = {i, j} in the automobile tire data.
K CL

K CG
K

5, 9 13.1654 0.7721 13.38790.7721 0.2225

7, 9 4.9712 3.3713 8.01973.3713 3.0485

5, 7 1.4881 2.8318 7.12132.8318 5.6332

3, 7 1.9939 2.9972 6.98682.9972 4.9929

3, 9 0.2126 −0.3611 6.9321−0.3611 6.7195

If we assume, for simplicity, that q = 2, K = {i, j} and correlation between yi1 and yi2 is close to
zero, then the first diagonal element of CL

K represents the influence of yi1 and y j1 on B̂, and the second
diagonal element of CL

K represents the influence of yi2 and y j2 on B̂; however, CG
K shows only the sum

of two influences of {yi1, y j1} and {yi2, y j2} on B̂.

3. Example

As an illustrative example for two versions of Cook’s distance CG
K and CL

K , we take automobile tire
data described in Green (1978). The data consist of 2 responses and 4 covariates, and the number of
observations is 10, i.e., q = 2, p = 5 and n = 10.

After fitting a multivariate linear model Y = XB+U, we evaluate two influence measures in Table
1. First, the global Cook’s distance CG

i reveals that the 9th observation is very influential, and the 7th

observation is also quite influential. If we see the local Cook’s distance CL
i , then the global influence

of the 9th observation 1.580 is sum 0.704 (local influence of y9,1) and 0.876 (local influence of y9,2);
however, the global influence of the 7th observation 1.196 is sum of 0.010 (local influence of y7,1) and
1.186 (local influence of y7,2). Therefore, the high influence of the 7th observation is mainly due to
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the 2nd component of the response y7,2. For the influence of two observations (Table 2), we see that
{5, 9} has the largest global Cook’s distance mainly due to y51 and y91; in addition, the contribution of
y52 and y92 is almost negligible.
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