A Sufficient Condition on Optimal Berry-Esseen Bounds of Functionals of Gaussian Fields

Yoon Tae Kim ${ }^{1, a}$
${ }^{\text {a }}$ Department of Finance and Information Statistics, Hallym University

Abstract

We find a sufficient condition for optimal Berry-Esseen bounds in the normal approximation of functionals of Gaussian fields studied by Nourdin and Peccati (2009b).

Keywords: Malliavin calculus, Berry-Esseen bound, Stein's method, multiple stochastic integral.

1. Introduction

Let $\left\{F_{n}\right\}$ be a sequence of zero-mean real-valued random variables with the form of a functional of an infinite dimensional Gaussian field. Nourdin and Peccati (2009a), by combining Malliavin calculus with Stein's method, obtain explicit bounds of the type

$$
\begin{equation*}
\sup _{z \in R}\left|P\left(F_{n} \leq z\right)-\Phi(z)\right| \leq \alpha(n), \quad n \geq 1, \tag{1.1}
\end{equation*}
$$

where $\Phi(z)=\int_{-\infty}^{z}(1 / \sqrt{2 \pi}) e^{-x^{2}} 2 d x$, and $\alpha(n)$ is some positive sequence converging to zero.
We describe the approach used in Nourdin and Peccati (2009a) as follows. Fix $z \in R$ and consider the Stein equation

$$
\begin{equation*}
\mathbf{1}_{(-\infty, z]}(x)-\Phi(x)=f^{\prime}(x)-x f(x), \quad x \in R \tag{1.2}
\end{equation*}
$$

Then it is well known that for every $z \in R$, the equation (1.2) has a solution f_{z} such that $\left\|f_{z}\right\|_{\infty} \leq \sqrt{2 \pi} / 4$ and $\left\|f_{z}^{\prime}\right\|_{\infty} \leq 1$. Denote by $D F_{n}$ the Malliavin derivative F_{n} and by L^{-1} the pseudo-inverse of the Ornstein-Ulhenbeck generator. $D F_{n}$ is a random element in an appropriate Hilbert space \mathbb{H}. By the integration by parts of a Malliavin calculus,

$$
\begin{align*}
P\left(F_{n} \leq z\right)-\Phi(z) & =E\left[f_{z}^{\prime}\left(F_{n}\right)-F_{n} f_{z}\left(F_{n}\right)\right] \\
& =E\left[f_{z}^{\prime}\left(F_{n}\right)\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right)\right] \tag{1.3}
\end{align*}
$$

The estimate $\left\|f_{z}^{\prime}\right\|_{\infty} \leq 1$ and the Cauchy-Schwartz inequality yield, from (1.3),

$$
\begin{equation*}
\sup _{z \in R}\left|P\left(F_{n} \leq z\right)-\Phi(z)\right| \leq \sqrt{E\left[\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right)^{2}\right]} . \tag{1.4}
\end{equation*}
$$

[^0]Hence the upper bound $\alpha(n)$ appearing in (1.1) is given by

$$
\alpha(n)=\sqrt{E\left[\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right)^{2}\right]} .
$$

The upper bound $\alpha(n)$ is said to be optimal for the sequence $\left\{F_{n}\right\}$ if there exists a constant $c \in(0,1)$ such that for all sufficiently large n,

$$
\begin{equation*}
c<\frac{\sup _{z \in R}\left|P\left(F_{n} \leq z\right)-\Phi(z)\right|}{\alpha(n)} \leq 1 . \tag{1.5}
\end{equation*}
$$

Nourdin and Peccati (2009b) show the existence of a constant c appearing in (1.5) by considering the convergence of quantities in (1.3). For this, they assume that the random vectors

$$
\begin{equation*}
\left(F_{n}, \frac{1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}}{\alpha(n)}\right), \quad n \geq 1, \tag{1.6}
\end{equation*}
$$

converge, in distribution, to a two-dimensional Gaussian vector with non-zero covariance.
Let $\mathbb{D}^{p, q}$ be a class of random variables defined in Section 2. We describe the main result of Nourdin and Peccati (2009b).

Theorem 1. (Nourdin and Peccati) Let $\left\{F_{n}\right\}$ be a sequence of centered and square integrable functional of some Gaussian process $X=\{X(h): h \in \mathbb{H}\}$ such that $E\left(F_{n}^{2}\right) \rightarrow 1$ as $n \rightarrow \infty$. Suppose that the following three conditions hold:
(i) for every $n, F_{n} \in \mathbb{D}^{1,2}$ and F_{n} has an absolutely continuous law with respect to Lebesgue measure.
(ii) the quantity $\alpha(n)=\sqrt{E\left[\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right)^{2}\right]}$ is such that (a) $\alpha(n)$ is finite for all n, (b) as $n \rightarrow \infty, \alpha(n)$ converges to zero and (c) there exists $m \geq 1$ such that $\alpha(n)>0$ for $n \geq m$.
(iii) as $n \rightarrow \infty$, the two-dimensional random vectors

$$
\left(F_{n}, \frac{1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}}{\alpha(n)}\right)
$$

converge, in distribution, to a centered two-dimensional Gaussian vector $\left(N_{1}, N_{2}\right)$ such that $E\left(N_{1}^{2}\right)=E\left(N_{2}^{2}\right)=1$ and $E\left(N_{1} N_{2}\right)=\rho$.

Then, the following upper bound holds:

$$
\begin{equation*}
\sup _{z \in R}\left|P\left(F_{n} \leq z\right)-\Phi(z)\right| \leq \sqrt{E\left[\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{H}\right)^{2}\right]} . \tag{1.7}
\end{equation*}
$$

Moreover, for every $z \in R$,

$$
\begin{equation*}
\frac{P\left(F_{n} \leq z\right)-\Phi(z)}{\alpha(n)} \rightarrow \frac{\rho^{2}}{3}\left(z^{2}-1\right) \frac{e^{-\frac{z^{2}}{2}}}{\sqrt{2 \pi}} . \tag{1.8}
\end{equation*}
$$

In this paper, by using Malliavin calculus, we find a sufficient condition on the sequence $\left\{F_{n}\right\}$ to hold the assumption (iii) of Theorem 1.

2. Preliminaries

In this section, we briefly review some basic facts about Malliavin calculus for Gaussian processes. For a more detailed reference, see Nualart (2006). Suppose that \mathbb{H} is a real separable Hilbert space with a scalar product denoted by $\langle\cdot, \cdot\rangle_{\mathbb{H}}$. Let $X=\{X(h), h \in \mathbb{H}\}$ be an isonormal Gaussian process, that is a centered Gaussian family of random variables such that $E(X(h) X(g))=\langle h, g\rangle_{\mathbb{H}}$. For every $q \geq 1$, let \mathcal{H}_{q} be the $q^{\text {th }}$ Wiener chaos of X, that is the closed linear subspace of $\mathbb{L}^{2}(\Omega)$ generated by $\left\{H_{q}(X(h)): h \in \mathbb{H},\|h\|_{\mathbb{H}}=1\right\}$, where H_{q} is the $n^{\text {th }}$ Hermite polynomial. We define a linear isometric mapping $I_{q}: \mathbb{H}^{\odot q} \rightarrow \mathcal{H}_{q}$ by $I_{q}\left(h^{\otimes q}\right)=q!H_{q}(X(h))$, where $\mathbb{H}^{\odot n}$ is the symmetric tensor product. The following duality formula holds

$$
\begin{equation*}
\mathbb{E}\left[F I_{q}(h)\right]=\mathbb{E}\left[\left\langle D^{q} F, h\right\rangle_{\mathbb{H}^{8 q}}\right], \tag{2.1}
\end{equation*}
$$

for any element $h \in \mathbb{H}^{\odot q}$ and any random variable $F \in \mathbb{D}^{q, 2}$. Here $\mathbb{D}^{q, 2}$ is the closure of the set of smooth random variables with respect to the norm

$$
\|F\|_{q, 2}^{2}=\mathbb{E}\left[F^{2}\right]+\sum_{k=1}^{q} \mathbb{E}\left[\left\|D^{k} F\right\|_{\mathbb{H} \not \mathbb{\theta}^{k}}^{2}\right]
$$

where D^{k} is the iterative Malliavin derivative.
If $f \in \mathbb{H}^{\odot p}$, the Malliavin derivative of the multiple stochastic integrals is given by

$$
\begin{equation*}
D_{z} I_{q}\left(f_{q}\right)=q I_{q-1}\left(f_{q}(\cdot, z)\right), \quad \text { for } z \in[0,1]^{2} \tag{2.2}
\end{equation*}
$$

Let $\left\{e_{l}, l \geq 1\right\}$ be a complete orthonormal system in \mathbb{H}.
The operator L, acting on square integrable random variables, is defined through the projection operators $\left\{J_{q}\right\}_{q \geq 0}$ as $L=\sum_{q=0}^{\infty}-q J_{q}$, being called the infinitesimal generator of the Ornstein-Uhlenbeck semigroup. It has the following properties: F is an element of $\operatorname{Dom}(L)\left(=\mathbb{D}^{2,2}\right)$ if and only if $F \in \mathbb{D}^{1,2}$ and $D F \in \operatorname{Dom}(\delta)$ and in this case $\delta D F=-L F$. We also define the operator L^{-1}, which is p seudoinverse of L, as follows:

$$
L^{-1} F=\sum_{q=1}^{\infty}-\frac{1}{q} J_{q}(F), \quad \text { for every } F \in \mathbb{L}^{2}(X)
$$

Recall that L^{-1} is an operator with values in $\mathbb{D}^{2,2}$ and that $L L^{-1} F=F-E[F]$ for all $F \in \mathbb{L}^{2}(X)$.

3. Main Results

We describe our main result in the following Theorem.
Theorem 2. Let $\left\{F_{n}\right\}$ be a sequence of centered and square integrable functional of some Gaussian process $X=\{X(h): h \in \mathbb{H}\}$ such that $E\left(F_{n}^{2}\right) \rightarrow 1$ as $n \rightarrow \infty$ and the condition (i) in Theorem 1 holds. If the following conditions hold,
(i) as n tends to infinity,

$$
\left\|(I-L)^{-\frac{1}{2}}\left(D F_{n}\right)\right\|_{\mathbb{H}}^{2} \rightarrow 1 \quad \text { in } L^{2}(\Omega)
$$

(ii) as n tends to infinity,

$$
\frac{1}{\alpha(n)}\left\langle(I-L)^{-1}\left(\left\langle D^{2} F_{n}, D L^{-1} F_{n}\right\rangle_{\mathbb{H}}+\left\langle D F_{n}, D^{2} L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right), D F_{n}\right\rangle_{\mathbb{H}} \rightarrow \rho \quad \text { in } L^{2}(\Omega),
$$

where

$$
\alpha(n)=\sqrt{E\left[\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right)^{2}\right]} .
$$

(iii) as n tends to infinity,

$$
\frac{1}{\alpha(n)^{2}}\left\|(I-L)^{-\frac{1}{2}}\left(\left\langle D^{2} F_{n}, D L^{-1} F_{n}\right\rangle_{\mathbb{H}}+\left\langle D F_{n}, D^{2} L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right)\right\|_{\mathbb{H}}^{2} \rightarrow 1 \quad \text { in } L^{2}(\Omega),
$$

then as $n \rightarrow \infty$, the two-dimensional random vectors

$$
\left(F_{n}, \frac{1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}}{\alpha(n)}\right)
$$

converge, in distribution, to a centered two-dimensional Gaussian vector $\left(N_{1}, N_{2}\right)$ such that $E\left(N_{1}^{2}\right)=$ $E\left(N_{2}^{2}\right)=1$ and $E\left(N_{1} N_{2}\right)=\rho$.

Proof: If $\left(N_{1}, N_{2}\right)$ is a centered two-dimensional Gaussian vector $\left(N_{1}, N_{2}\right)$ such that $E\left(N_{1}^{2}\right)=E\left(N_{2}^{2}\right)=$ 1 and $E\left(N_{1} N_{2}\right)=\rho$, then the characteristic function of bivariate normal is given by

$$
\varphi(s, t)=\exp \left\{-\frac{1}{2}\left(s^{2}+2 \rho s t+t^{2}\right)\right\}
$$

We will show that as n tends to infinity,

$$
\begin{equation*}
E\left[e^{i s F_{n}+i t G_{n}}\right] \rightarrow \varphi(s, t) \tag{3.1}
\end{equation*}
$$

Let us set

$$
G_{n}=\frac{1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}}{\alpha(n)} .
$$

For every $n \geq 1$, define $\varphi_{n}(s, t)=E\left(e^{i s F_{n}+i t G_{n}}\right)$. Then we have

$$
\begin{aligned}
\frac{\partial}{\partial s} \varphi_{n}(s, t) & =i E\left[F_{n} e^{i s F_{n}+i t G_{n}}\right] \\
\frac{\partial}{\partial t} \varphi_{n}(s, t) & =i E\left[G_{n} e^{i s F_{n}+i t G_{n}}\right], \\
\frac{\partial^{2}}{\partial s \partial t} \varphi_{n}(s, t) & =-E\left[F_{n} G_{n} e^{i s F_{n}+i t G_{n}}\right] .
\end{aligned}
$$

Since $E\left(F_{n}^{2}\right) \rightarrow 1$ as $n \rightarrow \infty$ and $E\left(G_{n}^{2}\right)=1$ for all $n \geq 1$, we have, from Chebyshev's inequality, that for any $\epsilon>0$ there exists a constant δ_{ϵ} such that

$$
P\left(\sqrt{F_{n}^{2}+G_{n}^{2}} \geq \delta_{\epsilon}\right) \leq \frac{E\left(F_{n}^{2}\right)+1}{\delta_{\epsilon}^{2}} \leq \frac{C}{\delta_{\epsilon}^{2}} .
$$

If we take $\delta_{\epsilon}=\sqrt{\epsilon / C}$, then

$$
\sup _{n} P\left(\sqrt{F_{n}^{2}+G_{n}^{2}} \geq \delta_{\epsilon}\right) \leq \epsilon
$$

Hence the sequence of random vectors (F_{n}, G_{n}) is tight. By Prohorov's theorem (Theorem 6.1 in Billingsley (1968)), the sequence (F_{n}, G_{n}) is relatively compact, and it suffices to show that the limit of any subsequence converging in distribution is the bivariate normal

$$
\mathcal{N}_{2}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right)
$$

We assume that the sequence of random vectors $\left(F_{n}, G_{n}\right)$ converges, in distribution, to (F, G), and it suffices to show that

$$
(F, G) \sim \mathcal{N}_{2}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & \rho \\
\rho & 1
\end{array}\right]\right) .
$$

Let us set

$$
\begin{aligned}
\frac{\partial}{\partial s} \varphi(s, t) & =i E\left[F e^{i s F+i t G}\right], \\
\frac{\partial}{\partial t} \varphi(s, t) & =i E\left[G e^{i s F+i t G}\right], \\
\frac{\partial^{2}}{\partial s \partial t} \varphi(s, t) & =-E\left[F G e^{i s F+i t G}\right] .
\end{aligned}
$$

It is clear that $G_{n} e^{i s F_{n}+i t G_{n}}$ converges, in distribution, to $G e^{i s F+i t G}$. Since $E\left(G_{n}^{2}\right)=1$ for all $n \geq 1$, we get, as n goes to infinity,

$$
\frac{\partial}{\partial t} \varphi_{n}(s, t) \rightarrow \frac{\partial}{\partial t} \varphi(s, t)
$$

By using the definition of the operator $L^{-1}, L=-\delta D$ and divergence operator δ, we get

$$
\begin{aligned}
\frac{\partial \varphi_{n}}{\partial t}(s, t) & =i E\left[L^{-1} L\left(G_{n}\right) e^{i s F_{n}+i t G_{n}}\right] \\
& =-i E\left[\sum_{q \geq 1} \frac{1}{q} J_{q}\left(L G_{n}\right) e^{i s F_{n}+i t G_{n}}\right] \\
& =-i E\left[\sum_{q \geq 1} \frac{1}{q} L\left(J_{q} G_{n}\right) e^{i s F_{n}+i t G_{n}}\right] \\
& =i \sum_{q \geq 1} \frac{1}{q} E\left[\delta D\left(J_{q} G_{n}\right) e^{i s F_{n}+i t G_{n}}\right] \\
& =i \sum_{q \geq 1} \frac{1}{q} E\left[\left\langle D\left(J_{q} G_{n}\right), D\left(e^{i s F_{n}+i t G_{n}}\right)\right\rangle_{\mathcal{H}}\right]
\end{aligned}
$$

Using the equality $D\left(J_{q} F\right)=J_{q-1}(D F)$ for all $q \geq 1$, we write

$$
\begin{aligned}
\frac{\partial \varphi_{n}}{\partial t}(s, t) & \left.=-s E\left[\left\langle\sum_{q=0} \frac{1}{q+1} J_{q}\left(D G_{n}\right), D F_{n}\right\rangle_{\mathbb{H}} e^{i s F_{n}+i t G_{n}}\right]-t E\left[\left\langle\sum_{q \geq 1} \frac{1}{q+1} J_{q}\left(D G_{n}\right), D G_{n}\right\rangle\right\rangle_{\mathbb{H}} e^{i s F_{n}+i t G_{n}}\right] \\
& =-s E\left[\left\langle(I-L)^{-1}\left(D G_{n}\right), D F_{n}\right\rangle_{\mathbb{H}} e^{i s F_{n}+i t G_{n}}\right]-t E\left[\left\langle(I-L)^{-1}\left(D G_{n}\right), D G_{n}\right\rangle_{\mathbb{H}} e^{i s F_{n}+i t G_{n}}\right] .
\end{aligned}
$$

The above two assumptions (ii) and (iii) give

$$
\begin{aligned}
\frac{\partial}{\partial t} \varphi_{n}(s, t) & \rightarrow-s \rho E\left[e^{i s F+i t G}\right]-t E\left[e^{i s F+i t G}\right] \\
& =-\operatorname{s\rho \varphi }(s, t)-t \varphi(s, t)
\end{aligned}
$$

Hence we have

$$
\begin{equation*}
\frac{\partial \varphi}{\partial t}(s, t)=-(s \rho+t) \varphi(s, t) \tag{3.2}
\end{equation*}
$$

From the differential equation (3.2), we obtain

$$
\begin{equation*}
\varphi(s, t)=\exp \left(-\frac{1}{2}\left(t^{2}+2 s t \rho\right)\right) \varphi(s, 0) \tag{3.3}
\end{equation*}
$$

However, similarly as for $(\partial / \partial t) \varphi_{n}(s, t)$, we get

$$
\frac{\partial}{\partial s} \varphi_{n}(s, 0)=-s E\left[\left\langle(I-L)^{-1}\left(D F_{n}\right), D F_{n}\right\rangle_{\mathcal{H}} e^{i s F_{n}}\right] .
$$

The condition (i) yields that as n tends to infinity,

$$
\begin{equation*}
\frac{\partial}{\partial s} \varphi_{n}(s, 0) \rightarrow-s \varphi(s, 0) \tag{3.4}
\end{equation*}
$$

Clearly, $F_{n} e^{i t F_{n}}$ converges, in distribution, to $F e^{i t F}$ and the boundedness of $L^{2}(\Omega)$ prove that as n tends to infinity,

$$
\begin{equation*}
\frac{\partial}{\partial s} \varphi_{n}(s, 0) \rightarrow \frac{\partial}{\partial s} \varphi(s, 0) \tag{3.5}
\end{equation*}
$$

From (3.4) and (3.5), it follows, with $\varphi(0,0)=1$, that

$$
\begin{equation*}
\varphi(s, 0)=e^{-\frac{1}{2} s^{2}} \tag{3.6}
\end{equation*}
$$

Combining (3.3) with (3.6), we obtain

$$
\begin{equation*}
\varphi(s, t)=\exp \left(-\frac{1}{2}\left(t^{2}+2 s t \rho+s^{2}\right)\right) \tag{3.7}
\end{equation*}
$$

Therefore we complete the proof of (3.1).
We give a sufficient condition on $\left\{F_{n}\right\}$ corresponding to (i), (ii) and (iii) in Theorem 2 in the case when $F_{n}=I_{q}\left(f_{n}\right)$.

Corollary 1. For $q \geq 2$, consider a sequence $\left\{F_{n}=I_{q}\left(f_{n}\right), n \geq 1\right\}$ of square integrable random variables belonging to $n^{\text {th }}$ Wiener chaos such that

$$
E\left(F_{n}^{2}\right)=q!\left\|f_{n}\right\|_{\mathbb{H}^{8 q}}^{2} \rightarrow 1 \text { as } n \rightarrow \infty .
$$

If the following conditions hold,
(i) as n tends to infinity,

$$
q\left\|I_{q-1}\left(f_{n}\right)\right\|_{\mathbb{H}}^{2} \rightarrow 1 \quad \text { in } \quad L^{2}(\Omega)
$$

(ii) as n tends to infinity,

$$
\frac{-2 q^{2}(q-1)}{\alpha(n)}\left\langle(I-L)^{-1}\left(\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}}\right), I_{q-1}\left(f_{n}\right)\right\rangle_{\mathbb{H}} \rightarrow \rho \quad \text { in } L^{2}(\Omega),
$$

where

$$
\alpha(n)=\sqrt{E\left[\left(1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathcal{H}}\right)^{2}\right]}
$$

(iii) as n tends to infinity,

$$
\frac{4 q^{2}(q-1)^{2}}{\alpha(n)^{2}}\left\|(I-L)^{-\frac{1}{2}}\left(\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}}\right)\right\|_{\mathbb{H}}^{2} \rightarrow 1 \quad \text { in } \quad L^{2}(\Omega),
$$

then, as n tends to infinity, the two-dimensional random vectors

$$
\left(F_{n}, \frac{1-\left\langle D F_{n},-D L^{-1} F_{n}\right\rangle_{\mathbb{H}}}{\alpha(n)}\right)
$$

converge, in distribution, to a centered two-dimensional Gaussian vector $\left(N_{1}, N_{2}\right)$ such that $E\left(N_{1}^{2}\right)=$ $E\left(N_{2}^{2}\right)=1$ and $E\left(N_{1} N_{2}\right)=\rho$.
Proof: The equations $(I-L)^{-1}\left(D I_{q}\left(f_{n}\right)\right)=I_{q-1}\left(f_{n}\right)$ and $D I_{q}\left(f_{n}\right)=q I_{q-1}\left(f_{n}\right)$ give

$$
\left\langle(I-L)^{-1}\left(D F_{n}\right), D F_{n}\right\rangle_{\mathbb{H}}=q\left\|I_{q-1}\left(f_{n}\right)\right\|_{\mathbb{H}}^{2} .
$$

By using the equations $D L^{-1}\left(I_{q}\left(f_{n}\right)\right)=-I_{q-1}\left(f_{n}\right), D^{2} I_{q}\left(f_{n}\right)=q(q-1) I_{q-2}\left(f_{n}\right)$ and $D^{2} L^{-1}\left(I_{q}\left(f_{n}\right)\right)=$ $-(q-1) I_{q-2}\left(f_{n}\right)$, we obtain

$$
\begin{equation*}
\left\langle D^{2} F_{n}, D L^{-1} F_{n}\right\rangle_{\mathbb{H}}=\left\langle D F_{n}, D^{2} L^{-1} F_{n}\right\rangle_{\mathbb{H}}=-q(q-1)\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}} . \tag{3.8}
\end{equation*}
$$

From (3.8), it follows that

$$
\begin{aligned}
& \frac{1}{\alpha(n)}\left\langle(I-L)^{-1}\left(\left\langle D^{2} F_{n}, D L^{-1} F_{n}\right\rangle_{\mathbb{H}}+\left\langle D F_{n}, D^{2} L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right), D F_{n}\right\rangle_{\mathbb{H}} \\
& =\frac{-2 q^{2}(q-1)}{\alpha(n)}\left\langle(I-L)^{-1}\left(\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}}\right), I_{q-1}\left(f_{n}\right)\right\rangle_{\mathbb{H}},
\end{aligned}
$$

which implies the condition (ii). As for the condition (iii), we obtain
$\frac{1}{\alpha(n)^{2}}\left\langle(I-L)^{-1}\left(\left\langle D^{2} F_{n}, D L^{-1} F_{n}\right\rangle_{\mathbb{H}}+\left\langle D F_{n}, D^{2} L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right),\left\langle D^{2} F_{n}, D L^{-1} F_{n}\right\rangle_{\mathbb{H}}+\left\langle D F_{n}, D^{2} L^{-1} F_{n}\right\rangle_{\mathbb{H}}\right\rangle_{\mathbb{H}}$
$=\frac{4 q^{2}(q-1)^{2}}{\alpha(n)^{2}}\left\langle(I-L)^{-1}\left(\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}}\right),\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}}\right\rangle_{\mathbb{H}}$
$=\frac{4 q^{2}(q-1)^{2}}{\alpha(n)^{2}}\left\|(I-L)^{-\frac{1}{2}}\left(\left\langle I_{q-1}\left(f_{n}\right), I_{q-2}\left(f_{n}\right)\right\rangle_{\mathbb{H}}\right)\right\|_{\mathbb{H}}^{2}$.
Therefore, we complete of the proof of this Corollary.

References

Billingsley, P. (1968). Converges of Probability Measures, John Wiley \& Sons, Inc.
Nourdin, I. and Peccati, G. (2009a). Stein's method on Wiener Chaos, Probability Theory and Related Fields, 145, 75-118.
Nourdin, I. and Peccati, G. (2009b). Stein's method and exact Berry-Esseen asymptotics for functionals of Gaussian fields, Annals of Probability, 37, 2231-2261.
Nualart, D. (2006). Malliavin Calculus and Related Topics, 2nd Ed., Springer.

[^0]: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology(2012-012783).
 ${ }^{1}$ Professor, Department of Statistics, Hallym University, Chuncheon, Gangwon-do 200-702, Korea.
 E-mail: ytkim@hallym.ac.kr

