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Abstract
We find a sufficient condition for optimal Berry-Esseen bounds in the normal approximation of functionals

of Gaussian fields studied by Nourdin and Peccati (2009b).
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1. Introduction

Let {Fn} be a sequence of zero-mean real-valued random variables with the form of a functional of an
infinite dimensional Gaussian field. Nourdin and Peccati (2009a), by combining Malliavin calculus
with Stein’s method, obtain explicit bounds of the type

sup
z∈R
|P(Fn ≤ z) − Φ(z)| ≤ α(n), n ≥ 1, (1.1)

where Φ(z) =
∫ z
−∞(1/

√
2π)e−x2

2dx, and α(n) is some positive sequence converging to zero.
We describe the approach used in Nourdin and Peccati (2009a) as follows. Fix z ∈ R and consider

the Stein equation

1(−∞,z](x) − Φ(x) = f ′(x) − x f (x), x ∈ R. (1.2)

Then it is well known that for every z ∈ R, the equation (1.2) has a solution fz such that ∥ fz∥∞ ≤
√

2π/4
and ∥ f ′z ∥∞ ≤ 1. Denote by DFn the Malliavin derivative Fn and by L−1 the pseudo-inverse of the
Ornstein-Ulhenbeck generator. DFn is a random element in an appropriate Hilbert space H. By the
integration by parts of a Malliavin calculus,

P(Fn ≤ z) − Φ(z) = E
[
f ′z (Fn) − Fn fz(Fn)

]
= E

[
f ′z (Fn)

(
1 −

⟨
DFn,−DL−1Fn

⟩
H

)]
. (1.3)

The estimate ∥ f ′z ∥∞ ≤ 1 and the Cauchy-Schwartz inequality yield , from (1.3),

sup
z∈R
|P(Fn ≤ z) − Φ(z)| ≤

√
E

[
(1 − ⟨DFn,−DL−1Fn⟩H)2] . (1.4)
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Hence the upper bound α(n) appearing in (1.1) is given by

α(n) =
√

E
[(

1 − ⟨DFn,−DL−1Fn⟩H
)2
]
.

The upper bound α(n) is said to be optimal for the sequence {Fn} if there exists a constant c ∈ (0, 1)
such that for all sufficiently large n,

c <
supz∈R |P(Fn ≤ z) − Φ(z)|

α(n)
≤ 1. (1.5)

Nourdin and Peccati (2009b) show the existence of a constant c appearing in (1.5) by considering the
convergence of quantities in (1.3). For this, they assume that the random vectorsFn,

1 −
⟨
DFn,−DL−1Fn

⟩
H

α(n)

 , n ≥ 1, (1.6)

converge, in distribution, to a two-dimensional Gaussian vector with non-zero covariance.
Let Dp,q be a class of random variables defined in Section 2. We describe the main result of

Nourdin and Peccati (2009b).

Theorem 1. (Nourdin and Peccati) Let {Fn} be a sequence of centered and square integrable
functional of some Gaussian process X = {X(h) : h ∈ H} such that E(F2

n) → 1 as n → ∞. Suppose
that the following three conditions hold:

(i) for every n, Fn ∈ D1,2 and Fn has an absolutely continuous law with respect to Lebesgue mea-
sure.

(ii) the quantity α(n) =
√

E[(1 − ⟨DFn,−DL−1Fn⟩H)2] is such that (a) α(n) is finite for all n, (b) as
n→ ∞, α(n) converges to zero and (c) there exists m ≥ 1 such that α(n) > 0 for n ≥ m.

(iii) as n→ ∞, the two-dimensional random vectorsFn,
1 −

⟨
DFn,−DL−1Fn

⟩
H

α(n)


converge, in distribution, to a centered two-dimensional Gaussian vector (N1,N2) such that
E(N2

1 ) = E(N2
2 ) = 1 and E(N1N2) = ρ.

Then, the following upper bound holds:

sup
z∈R
|P(Fn ≤ z) − Φ(z)| ≤

√
E[(1 − ⟨DFn,−DL−1Fn⟩H)2] . (1.7)

Moreover, for every z ∈ R,

P(Fn ≤ z) − Φ(z)
α(n)

→ ρ2

3
(z2 − 1)

e−
z2
2

√
2π
. (1.8)

In this paper, by using Malliavin calculus, we find a sufficient condition on the sequence {Fn} to
hold the assumption (iii) of Theorem 1.
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2. Preliminaries

In this section, we briefly review some basic facts about Malliavin calculus for Gaussian processes.
For a more detailed reference, see Nualart (2006). Suppose that H is a real separable Hilbert space
with a scalar product denoted by < · , · >H. Let X = {X(h), h ∈ H} be an isonormal Gaussian process,
that is a centered Gaussian family of random variables such that E(X(h)X(g)) = ⟨h, g⟩H. For every
q ≥ 1, let Hq be the qth Wiener chaos of X, that is the closed linear subspace of L2(Ω) generated by
{Hq(X(h)) : h ∈ H, ∥h∥H = 1}, where Hq is the nth Hermite polynomial. We define a linear isometric
mapping Iq : H⊙q → Hq by Iq(h⊗q) = q!Hq(X(h)), where H⊙n is the symmetric tensor product. The
following duality formula holds

E
[
FIq(h)

]
= E

[⟨DqF, h⟩H⊗q
]
, (2.1)

for any element h ∈ H⊙q and any random variable F ∈ Dq,2. Here Dq,2 is the closure of the set of
smooth random variables with respect to the norm

∥F∥2q,2 = E
[
F2

]
+

q∑
k=1

E
[∥∥∥DkF

∥∥∥2
H⊗k

]
,

where Dk is the iterative Malliavin derivative.
If f ∈ H⊙p, the Malliavin derivative of the multiple stochastic integrals is given by

DzIq

(
fq
)
= qIq−1

(
fq( · , z)

)
, for z ∈ [0, 1]2. (2.2)

Let {el, l ≥ 1} be a complete orthonormal system in H.
The operator L, acting on square integrable random variables, is defined through the projection op-

erators {Jq}q≥0 as L =
∑∞

q=0 −qJq, being called the infinitesimal generator of the Ornstein-Uhlenbeck
semigroup. It has the following properties: F is an element of Dom(L)(= D2,2) if and only if F ∈ D1,2

and DF ∈ Dom(δ) and in this case δDF = −LF. We also define the operator L−1, which is pseudo-
inverse of L, as follows:

L−1F =
∞∑

q=1

−1
q

Jq(F), for every F ∈ L2(X).

Recall that L−1 is an operator with values in D2,2 and that LL−1F = F − E[F] for all F ∈ L2(X).

3. Main Results

We describe our main result in the following Theorem.

Theorem 2. Let {Fn} be a sequence of centered and square integrable functional of some Gaussian
process X = {X(h) : h ∈ H} such that E(F2

n)→ 1 as n→ ∞ and the condition (i) in Theorem 1 holds.
If the following conditions hold,

(i) as n tends to infinity, ∥∥∥∥(I − L)−
1
2 (DFn)

∥∥∥∥2

H
→ 1 in L2(Ω).
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(ii) as n tends to infinity,

1
α(n)

⟨
(I − L)−1

(⟨
D2Fn,DL−1Fn

⟩
H
+

⟨
DFn,D2L−1Fn

⟩
H

)
,DFn

⟩
H
→ ρ in L2(Ω),

where

α(n) =
√

E
[
(1 − ⟨DFn,−DL−1Fn⟩H)2] .

(iii) as n tends to infinity,

1
α(n)2

∥∥∥∥(I − L)−
1
2

(⟨
D2Fn,DL−1Fn

⟩
H
+

⟨
DFn,D2L−1Fn

⟩
H

)∥∥∥∥2

H
→ 1 in L2(Ω),

then as n→ ∞, the two-dimensional random vectorsFn,
1 −

⟨
DFn,−DL−1Fn

⟩
H

α(n)


converge, in distribution, to a centered two-dimensional Gaussian vector (N1,N2) such that E(N2

1 ) =
E(N2

2 ) = 1 and E(N1N2) = ρ.

Proof: If (N1,N2) is a centered two-dimensional Gaussian vector (N1,N2) such that E(N2
1 ) = E(N2

2 ) =
1 and E(N1N2) = ρ, then the characteristic function of bivariate normal is given by

φ(s, t) = exp
{
−1

2

(
s2 + 2ρst + t2

)}
.

We will show that as n tends to infinity,

E
[
eisFn+itGn

]
→ φ(s, t). (3.1)

Let us set

Gn =
1 −

⟨
DFn,−DL−1Fn

⟩
H

α(n)
.

For every n ≥ 1, define φn(s, t) = E(eisFn+itGn ). Then we have

∂

∂s
φn(s, t) = iE

[
FneisFn+itGn

]
,

∂

∂t
φn(s, t) = iE

[
GneisFn+itGn

]
,

∂2

∂s∂t
φn(s, t) = −E

[
FnGneisFn+itGn

]
.

Since E(F2
n) → 1 as n → ∞ and E(G2

n) = 1 for all n ≥ 1, we have, from Chebyshev’s inequality, that
for any ϵ > 0 there exists a constant δϵ such that

P
(√

F2
n +G2

n ≥ δϵ
)
≤

E
(
F2

n

)
+ 1

δ2
ϵ

≤ C
δ2
ϵ

.
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If we take δϵ =
√
ϵ/C, then

sup
n

P
(√

F2
n +G2

n ≥ δϵ
)
≤ ϵ.

Hence the sequence of random vectors (Fn,Gn) is tight. By Prohorov’s theorem (Theorem 6.1 in
Billingsley (1968)), the sequence (Fn,Gn) is relatively compact, and it suffices to show that the limit
of any subsequence converging in distribution is the bivariate normal

N2

([
0
0

]
,

[
1 ρ
ρ 1

])
.

We assume that the sequence of random vectors (Fn,Gn) converges, in distribution, to (F,G), and it
suffices to show that

(F,G) ∼ N2

([
0
0

]
,

[
1 ρ
ρ 1

])
.

Let us set

∂

∂s
φ(s, t) = iE

[
FeisF+itG

]
,

∂

∂t
φ(s, t) = iE

[
GeisF+itG

]
,

∂2

∂s∂t
φ(s, t) = −E

[
FGeisF+itG

]
.

It is clear that GneisFn+itGn converges, in distribution, to GeisF+itG. Since E(G2
n) = 1 for all n ≥ 1, we

get, as n goes to infinity,

∂

∂t
φn(s, t)→ ∂

∂t
φ(s, t).

By using the definition of the operator L−1, L = −δD and divergence operator δ, we get

∂φn

∂t
(s, t) = iE

[
L−1L(Gn)eisFn+itGn

]
= −iE

∑
q≥1

1
q

Jq (LGn) eisFn+itGn


= −iE

∑
q≥1

1
q

L
(
JqGn

)
eisFn+itGn


= i

∑
q≥1

1
q

E
[
δD

(
JqGn

)
eisFn+itGn

]
= i

∑
q≥1

1
q

E
[⟨

D
(
JqGn

)
,D

(
eisFn+itGn

)⟩
H

]
.
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Using the equality D(JqF) = Jq−1(DF) for all q ≥ 1, we write

∂φn

∂t
(s, t) = −sE


⟨∑

q=0

1
q + 1

Jq(DGn),DFn

⟩
H

eisFn+itGn

 − tE


⟨∑

q≥1

1
q + 1

Jq(DGn),DGn

⟩
H

eisFn+itGn


= −sE

[⟨
(I − L)−1(DGn),DFn

⟩
H

eisFn+itGn
]
− tE

[⟨
(I − L)−1(DGn),DGn

⟩
H

eisFn+itGn
]
.

The above two assumptions (ii) and (iii) give

∂

∂t
φn(s, t)→− sρE

[
eisF+itG

]
− tE

[
eisF+itG

]
= − sρφ(s, t) − tφ(s, t).

Hence we have

∂φ

∂t
(s, t) = −(sρ + t)φ(s, t). (3.2)

From the differential equation (3.2), we obtain

φ(s, t) = exp
(
−1

2

(
t2 + 2stρ

))
φ(s, 0). (3.3)

However, similarly as for (∂/∂t)φn(s, t), we get

∂

∂s
φn(s, 0) = −sE

[⟨
(I − L)−1(DFn),DFn

⟩
H

eisFn
]
.

The condition (i) yields that as n tends to infinity,

∂

∂s
φn(s, 0)→ −sφ(s, 0). (3.4)

Clearly, FneitFn converges, in distribution, to FeitF and the boundedness of L2(Ω) prove that as n tends
to infinity,

∂

∂s
φn(s, 0)→ ∂

∂s
φ(s, 0). (3.5)

From (3.4) and (3.5), it follows, with φ(0, 0) = 1, that

φ(s, 0) = e−
1
2 s2
. (3.6)

Combining (3.3) with (3.6), we obtain

φ(s, t) = exp
(
−1

2

(
t2 + 2stρ + s2

))
. (3.7)

Therefore we complete the proof of (3.1). �

We give a sufficient condition on {Fn} corresponding to (i), (ii) and (iii) in Theorem 2 in the case when
Fn = Iq( fn).
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Corollary 1. For q ≥ 2, consider a sequence {Fn = Iq( fn), n ≥ 1} of square integrable random
variables belonging to nth Wiener chaos such that

E(F2
n) = q!∥ fn∥2H⊗q → 1 as n→ ∞.

If the following conditions hold,

(i) as n tends to infinity,

q∥Iq−1( fn)∥2H → 1 in L2(Ω)

(ii) as n tends to infinity,

−2q2(q − 1)
α(n)

⟨
(I − L)−1

(⟨
Iq−1( fn), Iq−2( fn)

⟩
H

)
, Iq−1( fn)

⟩
H
→ ρ in L2(Ω),

where

α(n) =

√
E

[(
1 − ⟨

DFn,−DL−1Fn
⟩
H
)2
]
.

(iii) as n tends to infinity,

4q2(q − 1)2

α(n)2

∥∥∥∥(I − L)−
1
2

(⟨
Iq−1( fn), Iq−2( fn)

⟩
H

)∥∥∥∥2

H
→ 1 in L2(Ω),

then, as n tends to infinity, the two-dimensional random vectorsFn,
1 −

⟨
DFn,−DL−1Fn

⟩
H

α(n)


converge, in distribution, to a centered two-dimensional Gaussian vector (N1,N2) such that E(N2

1 ) =
E(N2

2 ) = 1 and E(N1N2) = ρ.

Proof: The equations (I − L)−1(DIq( fn)) = Iq−1( fn) and DIq( fn) = qIq−1( fn) give⟨
(I − L)−1(DFn),DFn

⟩
H
= q

∥∥∥Iq−1( fn)
∥∥∥2
H .

By using the equations DL−1(Iq( fn)) = −Iq−1( fn), D2Iq( fn) = q(q − 1)Iq−2( fn) and D2L−1(Iq( fn)) =
−(q − 1)Iq−2( fn), we obtain⟨

D2Fn,DL−1Fn

⟩
H
=

⟨
DFn,D2L−1Fn

⟩
H
= −q(q − 1)

⟨
Iq−1( fn), Iq−2( fn)

⟩
H
. (3.8)

From (3.8), it follows that

1
α(n)

⟨
(I − L)−1

(⟨
D2Fn,DL−1Fn

⟩
H
+

⟨
DFn,D2L−1Fn

⟩
H

)
,DFn

⟩
H

=
−2q2(q − 1)

α(n)

⟨
(I − L)−1

(⟨
Iq−1( fn), Iq−2( fn)

⟩
H

)
, Iq−1( fn)

⟩
H
,
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which implies the condition (ii). As for the condition (iii), we obtain

1
α(n)2

⟨
(I − L)−1

(⟨
D2Fn,DL−1Fn

⟩
H
+

⟨
DFn,D2L−1Fn

⟩
H

)
,
⟨
D2Fn,DL−1Fn

⟩
H
+

⟨
DFn,D2L−1Fn

⟩
H

⟩
H

=
4q2(q − 1)2

α(n)2

⟨
(I − L)−1

(⟨
Iq−1( fn), Iq−2( fn)

⟩
H

)
,
⟨
Iq−1( fn), Iq−2( fn)

⟩
H

⟩
H

=
4q2(q − 1)2

α(n)2

∥∥∥∥(I − L)−
1
2

(⟨
Iq−1( fn), Iq−2( fn)

⟩
H

)∥∥∥∥2

H
.

Therefore, we complete of the proof of this Corollary. �
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