DOI QR코드

DOI QR Code

3.0T 무릎자기공명영상에서 3차원 FFE-PROSET 기법을 이용한 관절연골평가 : 2차원 TSE-SPIR 기법과 비교

Evaluation of Articular Cartilage using 3D FFE-PROSET Technique in 3.0 T Knee MR Imaging : Comparison with 2D TSE - SPIR Technique

  • 구은회 (청주대학교 방사선학과)
  • Goo, Eun-Hoe (Department of Radiological Science, Cheongju University)
  • 투고 : 2013.11.05
  • 심사 : 2013.12.20
  • 발행 : 2013.12.28

초록

본 실험의 목적은 2D TSE-SPIR 와 3D FFE-PROSET 기법을 비교하여 관절연골 묘출에 있어서 3D FFE-PORSET 기법의 임상적 유용성을 알아보고자 하였다. 2013년 1월부터 9월 까지 정상인(30명, 남자:12, 여자:18, 연령분포: 35 ~ 55, 평균연령: 49.48)을 대상으로 Philips 3.0T MRI 기기를 이용하여 검사를 하였고, 사용된 두 기법에 대한 관절연골 묘출을 정량적 분석으로 SNR과 CNR을 평가하였다. 정성적 분석은 영상의 묘출도을 3 등급에 관하여 MRI 전문방사선사가 평가를 하였다. 결과로 관절연골에 대한 SNRs 과 CNRs 값은 2D TSE-SPIR(SNRs: 4.41, 71.63, 7.34, CNRs: 64.30, 58.41) 과 3D FFE-PROSET(SNRs: 8.40, 114.02, 9.53, CNRs: 104.49, 139.49) 기법을 비교 했을 때 3D FFE-PROSET 기법이 유의성 있는 결과를 얻었고, 영상의 질 또한 3D FFE-PROSET(2.40) 기법이 높게 나타났다(p=0.0021). 결론적으로, 3D FFE-PROSET MRI가 2D FSE-SPIR 기법과 비교 했을 때 관절연골에 대한 평가에서 증가된 SNRs 값과 CNRs 값을 얻은 것을 보여 주었으며, 이러한 결론은 향후 관절연골 진단에 유용성 있는 정보를 제공할 것이다.

The purpose of this study is to know a clinical usefulness for delineation of articular cartilage compared with 2D TSE-SPIR and 3D FFE-PROSET technique. From January 2013 to september 2013, a total of 30 normal volunteers(12 men and 18 women aged between 35 and 55 years; mean 49.48 years) were studied on a philips 3.0T MRI scanner. As a quantitative analysis, SNRs and CNRs were evaluated by using two methods for delineation of articular cartilage. As a qualitative analysis, image quality was evaluated by special radiological technologist of MRI for image delineation on a three grade. As a results, SNRs and CNRs for articular cartilage were significantly greater for the 3D FFE-PROSET(SNRs: 8.40, 114.02, 9.53, CNRs: 104.49, 139.49) technique compared to 2D TSE-SPIR(SNRs: 4.41, 71.63, 7.34, CNRs: 64.30, 58.41) technique, image quality also was higher for evaluation of 3D FFE-PROSET(2.40) technique(p=0.0021). In conclusion, this study showed that a 3D FFE-PROSET MRI has improved SNRs and CNRs for evaluating of the articular cartilage, these conclusions in the future will be provided useful information in diagnosis of articular cartilage.

키워드

참고문헌

  1. J. Pan, J. B. Pialat ,T. Joseph , D. Kuo, G. B. Joseph, M. C. Nevitt , T. M. Link. Knee Cartilage T2 Characteristics and Evolution in Relation to Morphologic Abnormalities Detected at 3-T MR Imaging: A Longitudinal Study of the Normal Control Cohort from the Osteoarthritis Initiative. Radiology, Vol. 261, No. 2, pp. 507-515, 2011. https://doi.org/10.1148/radiol.11102234
  2. B. C. Vande Berg, F. E. Lecouvet, P. Poilvache, J. Jamart, R. Materne, B. Lengele, B. Maldague, J. Malghem. Assessment of Knee Cartilage in Cadavers with Dual-Detector Spiral CT Arthrography and MR Imaging. Radiology, Vol. 222, No. 2, pp. 430-436, 2002. https://doi.org/10.1148/radiol.2222010597
  3. J. S. Lin , K. P. Hwang , E. F. Jackson, J. D. Hazle, R. Jason Stafford, B. A. Taylor. Multiparametric fat-water separation method for fast chemical-shift imaging guidance of thermal therapies. radiology, Vol. 40, No. 10, 2013.
  4. R. Sutter, E. J. Ulbrich, V. Jellus, M. C. W. Nittka. Reduction of Metal Artifacts in Patients with Total Hip Arthroplasty with Slice-encoding Metal Artifact Correction and View-Angle Tilting MR Imaging. Radiology, Vol. 265, No. 1, pp. 204-214, 2012. https://doi.org/10.1148/radiol.12112408
  5. M. R. Schmid, J. Hodler, P. Vienne, C. A. Binkert, M. Zanetti. Bone Marrow Abnormalities of Foot and Ankle: STIR versus T1-weighted Contrast-enhanced Fat-suppressed Spin-Echo MR Imaging. Radiology, Vol. 224, No. 2, pp. 463-469, 2002. https://doi.org/10.1148/radiol.2242011252
  6. L. M. Fayad, M. A. Jacobs, X. Wang, J. A. Carrino, D. A. Bluemke. Musculoskeletal Tumors: How to Use Anatomic, Functional, and Metabolic MR Techniques. Radiology , Vol. 265, No. 2, pp. 340-356, 2012. https://doi.org/10.1148/radiol.12111740
  7. S. Tanaka, M. Mori, K. Kitazaki, K. Nakahira, H. Nakatsuka, Y. Maeda, H. Madono, Y. Naito, Y. Sugimori, Y. Inoue. Visualization of coronary arterial wall based on maximum intensity fusion of whole-heart MR angiogram and water suppression SPIR 3D T(1) TFE images. Magn Reson Med Sci., Vol. 8, No. 2, pp. 55-63, 2009. https://doi.org/10.2463/mrms.8.55
  8. G. Lutterbey, K. Behrends, M. V. Falkenhausen, M. P. Wattjes, N. Morakkabati, J. Gieseke, H. Schild. Is the body-coil at 3 Tesla feasible for the MRI evaluation of the painful knee? A comparative study. Eur Radiol., Vol. 17. No. 2, pp. 503-508, 2006.
  9. H. G. Potter, J. M. Linklater, A. A. Allen, J. A. Hannafin, S. B. Haas. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am., Vol. 80, No. 9, pp. 1276-1284, 1998. https://doi.org/10.2106/00004623-199809000-00005
  10. L. Macarini, A. Perrone, M. Murrone, S. Marlin, M. Stefanelli. Evaluation of patellar chondromalacia with MR: comparison between T2-weighted FSE SPIR and GE MTC. Radiol Med., Vol. 108, No. 3, pp. 159-71, 2004.
  11. J. Wu, L. Q. Lu, J. p Gu, X. D. Yin. The Application of Fat-Suppression MR Pulse Sequence in the Diagnosis of Bone-Joint Disease. IJMPCERO, Vol. 1, No. 3, pp. 88-94, 2012. https://doi.org/10.4236/ijmpcero.2012.13012
  12. K. Janssen. ProSet: suppress fat or water, philips, Available From: http://clinical.netforum. healthcare. philips.com -, Mar., 2005.
  13. F. Visser. Optimizing SPIR and SPAIR fat suppres sion, philips, Available From:http://clinical .netforum. healthcare. philips. com - , Nov., 2004.
  14. H. J. Kim, S. H. Lee, C. H. Kang, J. A. Ryu, M. J. Shin, K. J. Cho, W. S. Cho. Evaluation of the Chondromalacia Patella Using a Microscopy Coil: Comparison of the Two-Dimensional Fast Spin Echo Techniques and the Three-Dimensional Fast Field Echo Techniques. Korean Journal of Radiology, Vol. 12, No. 1, pp. 78-88, 2011. https://doi.org/10.3348/kjr.2011.12.1.78
  15. J. S. Bauer, S. J. Krause, C. J. Ross, R. Krug, J. Carballido-Gamio, E. Ozhinsky, S. Majumdar, T. M. Link. Volumetric cartilage measurements of porcine knee at 1.5-T and 3.0-T MR imaging: evaluation of precision and accuracy. Radiology, Vol. 241, No. 2, pp. 399-406, 2006. https://doi.org/10.1148/radiol.2412051330
  16. H. Y. Kim, S. H. Son, C. K. Eun, S. S. Han. Usefulness of Combined Fat- and Fluid-Suppressed SPIR-FLAIR Images in Optic Neuritis: Comparison with Fat-Suppressed SPIR or STIR Images or STIR images J Korean Radiol Soc, Vol. 45, No.6, pp. 539-545, 2001. https://doi.org/10.3348/jkrs.2001.45.6.539
  17. W. M. Byun, S. H. Ahn, M. W Ahn. Value of 3D MR lumbosacral radiculography in the diagnosis of symptomatic chemical radiculitis. AJNR Am J Neuroradiol, Vol. 33, No. 3, pp. 529-534, 2012. https://doi.org/10.3174/ajnr.A2813
  18. E. Quaia, V. Ulcigrai, M. Coss, L. De Paoli, M. Ukmar, F. Zanconati, A. De Pellegrin, N. De Manzini, M. A. Cova. Spectral Presaturation Inversion Recovery MR Imaging Sequence after Gadolinium Injection to Differentiate Fibrotic Scar Tissue and Neoplastic Strands in the Mesorectal Fat in Patients Undergoing Restaging of Rectal Carcinoma after Neoadjuvant Chemo- and Radiation Therapy. Acad Radiol, Vol. 18 No. 11, pp. 1365-1375, 2011. https://doi.org/10.1016/j.acra.2011.07.014
  19. X. C. Li, J. B. Shang, X. M. Wu, Q. S. Zeng, C. P. Sun, J. X. He, Z. W. Zhong, Z. S. Chen. MRI findings of uterine cervical cancer and value of MRI in preoperative staging. Nan Fang Yi Ke Da Xue Xue Bao, Vol. 27, No. 3, pp. 352-4, 2007.
  20. B. Turkbey, H. Mani, V. Shah, A. R. Rastinehad, M. Bernardo, T. Pohida, Y. Pang, D. Daar, C. Benjamin. Multiparametric 3T Prostate Magnetic Resonance Imaging to Detect Cancer: Histopathological Correlation Using Prostatectomy Specimens Processed in Customized Magnetic Resonance Imaging Based Molds. The Journal of urology. Vol. 186, No. 5, pp. 1818-1824, 2011. https://doi.org/10.1016/j.juro.2011.07.013
  21. A. Ba-Ssalamah, N. Schibany, S. Puig, A. M. Herneth, I. M. Noebauer-Huhmann, S. Trattnig. Imaging articular cartilage defects in the ankle joint with 3D fat-suppressed echo planar imaging: comparison with conventional 3D fat-suppressed gradient echo imaging. J Magn Reson Imaging, Vol. 16, No. 2, pp. 209-216, 2002. https://doi.org/10.1002/jmri.10153
  22. T. J. Mosher, J. Hatter, M. Mathew, M. Bechtel, E. A. Walker. Improved Cartilage Contrast with Driven Equilibrium at 3.0T. Proc. Intl. Soc. Mag. Reson. Med., Vol. 13, 2005.
  23. J. A. de Zwart, P. J. Ledden, P. Kellman, P. van Gelderen, J. H. Duyn. Design of a SENSE-optimized high-sensitivity MRI receive coil for brain imaging. Magn Reson Med., Vol. 47, No. 6, pp. 1218-1227, 2002. https://doi.org/10.1002/mrm.10169
  24. L. I. X, M. C. Benjamin, T. M. Link , D. D. Castillo, G. Blumenkrantz, J. Lozano, J. Carballido-Gamio, M. Ries, S. Majumdar. In vivo T(1rho) and T(2) mapping of articular cartilage in osteoarthritis of the knee using 3 T MRI. Osteoarthritis Cartilage, Vol. 15, No. 7, pp. 789-797, 2007. https://doi.org/10.1016/j.joca.2007.01.011
  25. M. Ryan, P. Cunningham, C. Cantwell, D. Brennan, S. Eustace. A comparison of fast MRI of hips with and without parallel imaging using SENSE. Br J Radiol, Vol. 78, No. 928, pp. 299-302, 2005. https://doi.org/10.1259/bjr/23825228