References
- Ahn, M.C., Kim, B., Holsen, T.M., Yi, S.M., Han, Y.J. (2010) Factors influencing concentrations of dissolved gaseous mercury (DGM) and total mercury (TM) in an artificial reservoir. Environmental Pollution 158, 347-355. https://doi.org/10.1016/j.envpol.2009.08.036
- Allard, B., Arsenie, I. (1991) Abiotic reduction of mercury by humic substances in aquatic system - an important process for the mercury cycle. Water Air Soil Pollution 56, 457-464. https://doi.org/10.1007/BF00342291
- Bahlmann, E., Ebinghaus, R., Ruch, W. (2004) The effect of soil moisture on the emission of mercury from soils. RMZ - Mater Geoenviron 51, 791-794.
- Barkay, T., Miller, S.M., Summers, A.O. (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews 27, 355-384. https://doi.org/10.1016/S0168-6445(03)00046-9
- Bohn, C.C., Gebhardt, K. (1989) Comparison of hydrometer settling times in soil particle size analysis. Journal of Range Management 42(1), 81-83. https://doi.org/10.2307/3899665
- Bouyoucos, G.J. (1962) Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54, 464-465. https://doi.org/10.2134/agronj1962.00021962005400050028x
- Carpi, A., Frei, A., Cocris, D., McCloskey, R., Contreras, E., Ferguson, K. (2007) Analytical artifacts produced by a polycarbonate chamber compared to a Teflon chamber for measuring surface mercury fluxes. Analytical and Bioanalytical Chemistry 388, 361-365. https://doi.org/10.1007/s00216-006-1111-0
- Choi, H.D. (2007) Mercury inputs, outputs, cycling and ambient concentrations under the forest canopy in the Adirondacks of New York, Ph.D. thesis, Clarkson University.
- Choi, H.D., Holsen, T.M. (2009a) Gaseous mercury fluxes from the forest floor of the Adirondacks. Environmental Pollution 157, 592-600. https://doi.org/10.1016/j.envpol.2008.08.020
- Choi, H.D., Holsen, T.M. (2009b) Gaseous mercury emissions from unsterilized and sterilized soils: The effect of temperature and UV radiation. Environmental Pollution 157, 1673-1678. https://doi.org/10.1016/j.envpol.2008.12.014
- Corbett-Hains, H., Walters, N.E., Heyst, B.J.V. (2012) Evaluating the effects of sub-zero temperature cycling on mercury flux from soils. Atmospheric Environmental 63, 102-108. https://doi.org/10.1016/j.atmosenv.2012.09.047
- Eckley, C.S., Gustin, M., Lin, C.-J., Li, X., Miller, M.B. (2010) The influence of dynamic chamber design and operating parameters on calculated surface-to-air mercury fluxes. Atmospheric Environmental 44, 194-203. https://doi.org/10.1016/j.atmosenv.2009.10.013
- Engle, M.A., Gustin, M.S., Zhang, H. (2001) Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA. Atmospheric Environmental 35, 3987-3997. https://doi.org/10.1016/S1352-2310(01)00184-4
- Engle, M.A., Gustin, M.S., Lindberg, S.E., Gertler, A.W., Ariya, P.A. (2005) The influence of ozone on atmospheric emissions of gaseous elemental mercury and reactive gaseous mercury from substrates. Atmospheric Environmental 39, 7506-7517. https://doi.org/10.1016/j.atmosenv.2005.07.069
- Ericksen, J.A., Gustin, M.S., Xin, M., Weisberg, P.J., Fernandez, G.C.J. (2006) Air-soil exchange of mercury from background soils in the United States. Science of the Total Environment 366, 851-863. https://doi.org/10.1016/j.scitotenv.2005.08.019
- Fang, F.M., Wang, Q.C., Li, J.F. (2004) Urban environmental mercury in Changchun, a metropolitan city in northeastern China: source, cycle, and fate. Science of the Total Environment 330, 159-170. https://doi.org/10.1016/j.scitotenv.2004.04.006
- Fu, X.W., Feng, X.B., Wang, S.F. (2008) Exchange fluxes of Hg between surfaces and atmosphere in the eastern flank of Mount Gongga, Sichuan province, south-western China. Journal of Applied Geophysical Research 113 (D20306). Doi:10.1029/2008JD009814.
- Fu, X., Feng, X., Zhang, H., Yu, B., Chen, L. (2012) Mercury emissions from natural surfaces highly impacted by human activities in Guangzhou province, South China. Atmospheric Environmental 54, 185-193. https://doi.org/10.1016/j.atmosenv.2012.02.008
- Gabriel, M.C., Williamson, D.G., Zhang, H., Brooks, S., Lindberg, S. (2006) Diurnal and seasonal trends in total gaseous mercury flux from three urban ground surfaces. Atmospheric Environmental 40, 4269-4284. https://doi.org/10.1016/j.atmosenv.2006.04.004
- Gustin, M.S., Stamenkovic, J. (2005) Effect of watering and soil moisture on mercury emissions from soils. Biogeochemistry 76, 215-232. https://doi.org/10.1007/s10533-005-4566-8
- Hamlett, N.V., Landale, E.C., Davis, B.H., Summers, A.O. (1992) Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. Journal of Bacteriology 174, 6377-6385. https://doi.org/10.1128/jb.174.20.6377-6385.1992
- Kim, K.H., Kim, K.Y. (1999) The exchange of gaseous mercury across soil-air interface in a residential area of Soul, Korea. Atmospheric Environmental 33, 3153-3165. https://doi.org/10.1016/S1352-2310(98)00419-1
- King, J.K., Harmon, S.M., Fu, T.T., Gladden, J.B. (2002) Mercury removal, methylmercury formation, and sulfate- reducing bacteria profiles in wetland mesocosms. Chemosphere 46, 859-870. https://doi.org/10.1016/S0045-6535(01)00135-7
- Kocman, D., Horvat, M. (2010) A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment. Atmospheric Chemistry and Physics 10, 1417-1426. https://doi.org/10.5194/acp-10-1417-2010
- Leonard, T.L., Taylor, G.E., Gustin, M.S., Fernandez, G.C.J. (1998) Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere. Environmental Toxicology and Chemistry 17, 2063-2071. https://doi.org/10.1002/etc.5620171024
- Lin, C.J, Gustin, M.S., Singhasuk, P., Eckley, C., Miller, M. (2010) Empirical models for estimating mercury flux from soils. Environmental Science & Technology 44, 8522-8528. https://doi.org/10.1021/es1021735
- Lindberg, S.E., Zhang, H., Vette, A.F., Gustin, M.S., Barnett, M.O., Kuiken, T. (2002) Dynamic flux chamber measurement of gaseous mercury emission fluxes over soils: Part 2 - Effect of flushing flow rate and verification of a two-resistance exchange interface simulation model. Atmospheric Environmental 36, 847-859. https://doi.org/10.1016/S1352-2310(01)00502-7
- Mauclair, C., Layshock, J., Carpi, A. (2008) Quantifying the effect of humic matter on the emission of mercury from artificial soil surfaces. Applied Geochemistry 23, 594-601. https://doi.org/10.1016/j.apgeochem.2007.12.017
- Meili, M. (1991) The coupling of mercury and organic matter in the biogeochemical cycle-towards a mechanistic model for the boreal forest zone. Water Air Soil Pollution 56, 333-347. https://doi.org/10.1007/BF00342281
- Nelson, D.W., Sommers, L.E. (1996) Total carbon, organic carbon, and organic matter. In (Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. and Sumner, M.E. Eds.), Methods of Soil Analysis. Part 3: Chemical Methods. American Society of Agronomy, Inc. and Soil Science Society of America, Inc., Madison, Wisconsin, 961-1010.
- Poissant, L., Casimir, A. (1998) Water-air and soil-air exchange rate of total gaseous mercury measured at background sites. Atmospheric Environmental 32, 883-893. https://doi.org/10.1016/S1352-2310(97)00132-5
- Poissant, L., Amyot, M., Pilote, M., Lean, D. (2000) Mercury water-air exchange over the upper St. Lawrence river and Lake Ontario. Environmental Science & Technology 34, 3069-3078. https://doi.org/10.1021/es990719a
- Savitzky, A., Golay, M.J.E. (1964) Smoothing and differentiation of data by simplified least squares procedure. Analytical Chemistry 36, 19627-1639.
- Schluter, K. (2000) Review; evaporation of mercury from soils. An integration and synthesis of current knowledge. Environmental Geology 39, 249-271. https://doi.org/10.1007/s002540050005
- Scholtz, M.T., Van Heyst, B.J., Schroeder, W.H. (2003) Modelling of mercury emissions from background soils. Science Total Environmental 304, 185-207. https://doi.org/10.1016/S0048-9697(02)00568-5
- Schroeder, W.H., Beauchamp, S., Edwards, G., Poissant, L., Rasmussen, P. (2005) Gaseous mercury emissions from natural sources in Canadian landscapes. Journal of Geophysical Research 110 (D18302). doi:10.1029/2004JD005699.
- Schuster, E. (1991) The behavior of mercury in the soil with special emphasis on complexation and adsorption processes - a review of the literature. Water Air Soil Pollution 56, 667-680. https://doi.org/10.1007/BF00342308
- Skinner, D. (1998) UV curing through semi-transparent materials: the challenge of the DVD bonding process. In: The RadTech International North America 98 Conference, Chicago, IL.
- Skyllberg, U., Bloom, P.R., Qian, J., Lin, C.-M., Bleam, W.F. (2006) Complexation of mercury (II) in soil organic matter: EXAFS evidence for linear two-coordination with reduced sulfur groups. Environmental Science Technology 40, 4174-4180. https://doi.org/10.1021/es0600577
- Smith, T., Pitts, K., McGarvey, J.A., Summers, A.O. (1998) Bacterial oxidation of mercury metal vapor, Hg(0). Applied and Environmental Microbiology 64, 1328-1332.
- Stamerkovic, J., Gustin, M.S., Arnone, J.A., Johnson, D.W., Larsen, J.D., Verburg, P.S.J (2008) Atmospheric mercury exchange with a tallgrass prairie ecosystem housed in mesocosms. Science of Total Environmental 406, 227-238. https://doi.org/10.1016/j.scitotenv.2008.07.047
- Summers, A.O., Silver, S. (1972) Mercury resistance in a plasmid-bearing strain of Excherichia coli. Journal of Bacteriology 112, 1228-1236.
- UNEP (2013) Global mercury assessment 2013; Source, emissions, releases and environmental transport.
- Wallschlager, D., Kock, H.H., Schroeder, W.H., Lindberg, S.E., Ebinghaus, R., Wilken, R.D. (2000) Mechanism and significance of mercury volatilization from contaminated floodplains of the German river Elbe. Atmospheric Environmental 34, 3745-3755. https://doi.org/10.1016/S1352-2310(00)00083-2
- Xin, M., Gustin, M., Johnson, D. (2007) Laboratory investigation of the potential for re-emission of atmospherically derived Hg from soils. Environmental Science Technology 41, 4946-4951. https://doi.org/10.1021/es062783f
- Yang, Y.K., Cheng, Z., Shi, X.J., Lin, T., Wang, D.Y. (2007) Effect of organic matter and pH on mercury release from soils. Journal of Environmental Science 19, 1349-1354. https://doi.org/10.1016/S1001-0742(07)60220-4
- Zhang, H., Lindberg, S.E. (2001) Sunlight and iron(III)- induced photochemical production of dissolved gaseous mercury in freshwater. Environmental Science Technology 35(5), 928-935. https://doi.org/10.1021/es001521p
- Zhang, H., Lindberg, S.E. (1999) Processes influencing the emission of mercury from soils: A conceptual model. Journal of applied Geophysical Research 104(D17), 21889-21896. https://doi.org/10.1029/1999JD900194
- Zhang, H., Lindberg, S.E., Kuiken, T. (2008) Mysterious diel cycles of mercury emission from soils held in the dark at constant temperature. Atmospheric Environmental 42, 5424-5433. https://doi.org/10.1016/j.atmosenv.2008.02.037
Cited by
- Laboratory investigation of factors affecting mercury emissions from soils vol.72, pp.7, 2014, https://doi.org/10.1007/s12665-014-3177-x
- Mercury concentrations in environmental media at a hazardous solid waste landfill site and mercury emissions from the site vol.76, pp.10, 2017, https://doi.org/10.1007/s12665-017-6700-z
- Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling vol.15, pp.12, 2015, https://doi.org/10.5194/acp-15-7103-2015
- Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling vol.15, pp.4, 2015, https://doi.org/10.5194/acpd-15-5269-2015