References
- Dunia R, Qin SJ, Edgar TF, Mcavoy TJ (1996), "Sensor fault identification and reconstruction using principal component analysis", Proc. of IFAC Congress'96, pp. 259-264, San Francisco, June 30-July 5
- Furtado P, Madeira H (1999), "Analysis of accuracy of data reduction techniques", First International Conference, DaWaK'99, Florence, Italy, Springer-Verlag, pp. 377-388
- Geldi P, Kowalski B (1986), "Partial Least Squares Regression: A Tutorial", Analytica Chemica Acta Vol. 185, pp. 1-17 https://doi.org/10.1016/0003-2670(86)80028-9
- Hines JW, Gribok AV, Attieh I, Uhrig RE (2000), "Regularization methods for inferential sensing in nuclear power plants", Fuzzy Systems and Soft Computing in Nuclear Engineering, Chapter 13, Ed. Da Ruan, Springer Verlag
- Hoskuldsson A (1988), "PLS Regression Methods", Journal of Chemometrics, Vol. 2, pp. 211-228 https://doi.org/10.1002/cem.1180020306
- Sanchez-Franco MJ, Roldan JL (2005), "Web acceptance and usage model: A comparison between goal-directed and experiential web users", Internet Research, Emerald Group Publishing Limited, Vol. 15, Issue 1, pp. 21-48
- Valle-Cervantes S, Li W, Qin SJ (1999), "Selection of the number of principal components: A new criterion with compression to existing methods", I&EC Research, Vol. 38, pp. 4389-4401
- Westerhuis JA, De Jong S, Smilde AK (2001), "Direct orthogonal signal correction", Chemomet rics and Intelligent Laboratary Systems, Vol. 56, pp. 13-25 https://doi.org/10.1016/S0169-7439(01)00102-2
- Wold H (1966), "Non-linear estimation by iterative least squares procedures", In: David, F. (Ed.), Research Papers in Statistics, Wiley, NY
- Wold H (1985), "Partial least squares", in Kotz, S., Johnson, N.L. (Eds), Encyclopedia of Statistical Sciences, Wiley, New York, NY, Vol. 6, pp. 581-91