DOI QR코드

DOI QR Code

Observation on the Ignition Delay Time of Cool and Thermal Flame of n-heptane/alcohol Blended Fuel at Low Temperature Combustion Regime

저온연소조건에서 n-heptane/alcohol 혼합연료의 냉염과 열염에 대한 착화지연 관찰

  • 송재혁 (부산대학교 대학원 기계공학과) ;
  • 강기중 (부산대학교 대학원 기계공학과) ;
  • 류승협 (현대중공업 엔진기계연구소) ;
  • 최경민 (부산대학교 기계공학부) ;
  • 김덕줄 (부산대학교 기계공학부)
  • Received : 2013.11.06
  • Accepted : 2013.12.11
  • Published : 2013.12.30

Abstract

The ignition delay time is an important factor to understand the combustion characteristics of internal combustion engine. In this study, ignition delay times of cool and thermal flame were observed separately in homogeneous charge compression ignition(HCCI) engine. This study presents numerical investigation of ignition delay time of n-heptane and alcohol(ethanol and n-butanol) binary fuel. The $O_2$ concentration in the mixture was set 9-10% to simulate high exhaust gas recirculation(EGR) rate condition. The numerical study on the ignition delay time was performed using CHEMKIN codes with various blending ratios and EGR rates. The results revealed that the ignition delay time increased with increasing the alcohol fraction in the mixture due to a decrease of oxidation of n-heptane at the low temperature. From the numerical analysis, ethanol needed more radical and higher temperature than n-butanol for oxidation. In addition, thermal ignition delay time is sharply increasing with decreasing $O_2$ fraction, but cool flame ignition delay time changes negligibly for both binary fuels. Also, in high temperature regime, the ignition delay time showed similar tendency with both blends regardless of blending ratio and EGR rate.

Keywords

References

  1. X. Lu, D. Han, Z. Huang, "Fuel design and management for the control of advanced compression- ignition combustion modes", Progress in Energy and Combustion Science, Vol. 37, pp. 741-783, 2011. https://doi.org/10.1016/j.pecs.2011.03.003
  2. M. Yao, Z. Zheng, H. Liu, "Progress and recent trends in homogeneous charge compression iginition( HCCI) engines", Progress in Energy and Combustion Science, Vol. 35, pp. 398-437, 2009. https://doi.org/10.1016/j.pecs.2009.05.001
  3. A Naidja, C. R. Krishna, T. Butcher, D. Mahajan, "Cool flame partial oxidation and its role in combustion and reforming of fuels for fuel cell systems", Prog. Energy Combust. Sci., Vol. 29, pp. 155-191, 2003. https://doi.org/10.1016/S0360-1285(03)00018-2
  4. M. Zheng, M. C Mulenga, G. T Reader, M. Wang, DS-K. Ting, J. Tjong, "Biodiesel engine performance and emissions in low temperature combustion", Fuel, Vol. 87, pp. 714-722, 2008. https://doi.org/10.1016/j.fuel.2007.05.039
  5. H. Ogawa, T. Li, N. Miyamoto, "Characteristics of low temperature and low oxygen diesel combustion with ultra-high exhaust gas recirculation", International Journal of Engine Research, Vol. 8, pp. 365-378, 2007. https://doi.org/10.1243/14680874JER00607
  6. S. M. Sarathy, S. Vranckx, K. Yasunaga, M. Mehl, P. O$\beta$wald, W. K. Metcalfe, C. K. Westbrook, W. J. Pitz, K. Kohse-Hoinghaus, R. X. Fernandes, H. J. Curran, "A comprehensive chemical kinetic combustion model for the four butanol isomer", Combustion, Flame, Vol. 159, pp. 2028-2055, 2012. https://doi.org/10.1016/j.combustflame.2011.12.017
  7. CHEMKIN-PRO, Release 15083, Reaction Design, San Diego, 2009.
  8. P. Dagaut, C. Togbe, "Experimental and modeling study of the kinetics of oxidation of ethanol/nheptane mixture in a jet-stirred reactor", Fuel, Vol. 89, pp. 280-286, 2010. https://doi.org/10.1016/j.fuel.2009.06.035
  9. P. Dagaut, C. Togbe, "Experimental and modeling study of the kinetics of oxidation of butanol/nheptane mixture in a jet-stirred reactor", Energy & Fuels, Vol. 23, pp. 3527-3535, 2009. https://doi.org/10.1021/ef900261f
  10. M. Mehl, W. J. Pitz, C. K. Westbrook, H. J. Curran, "Kinetic Modeling of Gasoline Surrogate Components and Mixture under Engine Conditions", Proc. Combust. Inst., Vol. 33, No.1, pp. 193-200, 2011.
  11. Y. Zhang, K. Kumar, C-J. Sung, "Autoignition of binary fuel blends of n-butanol and n-heptane in a rapid compression machine", AIAA, Vol. 92, 2011.
  12. B. W. Weber, K. Kumar, Y. Zhang, C-J. Sung, "Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature", Combustion, Flame, Vol. 158, pp. 809-819, 2011. https://doi.org/10.1016/j.combustflame.2011.02.005
  13. J. Zhang, S. Niu, Y. Zhang, C. Tang, X. Jiang, E. Hu, Z. Huang, "Experimental and modeling study of the auto-ignition of n-heptane/n-butanol mixtures", Combustion, Flame, Vol. 160, pp. 31-39, 2013. https://doi.org/10.1016/j.combustflame.2012.09.006
  14. F. M. Haas, M. Chaos, F. L. Dryer, "Low and intermediate temperature oxidation of ethanol and ethanol-PRF blends: An experimental and modeling study", Combustion, Flame, Vol. 156, pp. 2346- 2350, 2009. https://doi.org/10.1016/j.combustflame.2009.08.012
  15. G. Mittal, M. Chaos, C. J. Sung, F. L. Dryer, "Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling", Fuel Proc. Tech, Vol. 89, pp. 1244-1254, 2008.
  16. C. K. Law, P. Zhao, "NTC-affected ignition in nonpremixed counterflow", Combustion, Flame, Vol. 159, pp. 1044-1054, 2012. https://doi.org/10.1016/j.combustflame.2011.10.012
  17. G. da silva, J. W. Bozzelli, L. Liang, J. T. Farrell, "Ethanol oxidation: Kinetics of the $\alpha$-hydroxyethyl radical + $O_{2}$ reaction", J. Phys. Chem, Vol. 113, pp. 8923-8933, 2009. https://doi.org/10.1021/jp903210a
  18. 송재혁, 강기중, Zheng Yang, XingCai Lu, 최경민, 김덕줄, "저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구", 한국연소학회지, Vol. 18, pp. 32-41, 2013.
  19. P. Saisirirat, C. Togbe, S. Chanchaona, F. Foucher, C. Mounaim-Rousselle, P. Dagaut, "Auto-ignition and combustion characteristics in HCCI and JSR using 1-butanol/n-heptane and ethanol/n-heptane blends", Proc. Combust. Inst., Vol. 33, pp. 3007- 3014, 2011.

Cited by

  1. 고온·고압 조건에서 바이오디젤의 가연한계 예측 vol.24, pp.4, 2019, https://doi.org/10.15435/jilasskr.2019.24.4.157