DOI QR코드

DOI QR Code

Mineral Chemistry of Magnetite from the Hongcheon Carbonatite-Phoscorite Complex, Korea

홍천 카보나타이트-포스코라이트 복합체에서 산출되는 자철석의 광물화학

  • Received : 2013.12.03
  • Accepted : 2013.12.25
  • Published : 2013.12.31

Abstract

Magnetite, a major constituent mineral of the Hongcheon carbonatite-phoscorite complex, was produced over three stages in each rock type and decreased in quantity toward the late stage. Electron microprobe analyses for magnetite revealed that Ti and V were detected in traces, but showed increasing tendency from early to late stage. On the contrary, Mg and Mn decreased distinctly, and it is the general differentiation trend of carbonatitic magma. Al also showed decreasing tendency in carbonatite and phoscorite, and Cr was mostly below detection limit except late phoscorite. In early stage, $Fe^{2+}$ was largely replaced by $Mg{2+}$ and $Mn^{2+}$, and $Fe^{3+}$ by $Al^{3+}$ in magnetite, but it has nearly pure composition in late stage. Tendency of increase in V and decrease in Mn toward late stage represents that magma differentiation progressed under the condition of decreasing oxygen fugacity. Low concentrations of Mg, Al, Cr and Ti, as well as the absence of olivine and phlogopite, suggest that the Hongcheon carbonatite-phoscorite complex was generated from depleted magma. Especially, lower concentrations of Mg in magnetite compared to other typical carbonatite-phoscorite complex, and abundant occurrence of Fe-carbonate minerals and quartz in late stage, suggest that magma differentiation of the Hongcheon carbonatite-phoscorite proceeded to the latest stage.

홍천 카보나타이트-포스코라이트 복합체를 형성하는 주 구성광물인 자철석은 각각 세 시기에 걸쳐 정출되었으며 후기로 가면서 함량이 점차 감소한다. 자철석에 대한 전자현미분석결과 Ti, V은 미량 검출되지만 초기에서 후기로 가면서 증가하는 경향을 보여준다. 반면, Mg, Mn은 뚜렷이 감소하는데 이는 일반적인 카보나타이트질 마그마 분화특성을 잘 나타낸다. Al 또한 카보나타이트와 포스코라이트에서 감소하는 경향을 보여주며, Cr은 대부분 검출한계 미만을 나타내나 후기 포스코라이트에 와서는 미량 정출된다. 자철석은 초기에는 $Fe^{2+}$가 주로 $Mg{2+}$$Mn^{2+}$에 의해 치환되고, $Fe^{3+}$$Al^{3+}$에 의한 치환되는 양상이 주를 이루었으나 후기에 와서는 감소하면서 거의 순수한 자철석 조성을 갖게 된다. V의 증가와 Mn의 감소는 마그마 분화가 산소분압이 점차 감소하는 환경에서 진행되었음 나타내고, 감람석, 금운모의 부재와 더불어 자철석의 Mg, Al, Cr 및 Ti 원소들의 함량이 낮은 것은 홍천 카보나타이트-포스코라이트 복합체가 결핍된 모마그마로부터 생성되었음을 지시한다. 특히, 후기로 가면서 철질 탄산염광물과 석영의 산출이 두드러지면서 전형적인 카보나타이트-포스코라이트 복합체에 비해 연구지역 자철석의 Mg 함량이 적게 산출되는 것은 마그마 분화가 최후기까지 진행되었음을 시사한다.

Keywords

References

  1. Chakhmouradian, A.R. and Zaitsev, A.N. (1999) Calciteamphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. I. Oxide minerals. The Canadian Mineralogist, 37, 177-198.
  2. Cho, M. and Kim, J.W. (1993) Occurrence of kyanite in the Yongduri gneiss complex of the Chuncheon-Hongcheon area: its tectonometrmorphic implication. The Journal of the Petrological Society of Korea, 2, 1-8 (in Korean with English abstract).
  3. Dawson, J.B. (1962) Sodium carbonate lavas from Oldoinyo Lengai, Tanganyika. Nature, 195, 1075-1076. https://doi.org/10.1038/1951075a0
  4. Dawson, J.B., Steele, I.M., Smith, J.V., and Rivers, M.L. (1996) Minor and trace element chemistry of carbonates, apatites and magnetites in some African carbonatites. Mineralogical Magazine, 60, 415-425. https://doi.org/10.1180/minmag.1996.060.400.03
  5. Droop, G.T.R. (1987) A general equation for estimating $Fe^{3+}$ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineralogical Magazine, 51, 431-435. https://doi.org/10.1180/minmag.1987.051.361.10
  6. Gaspar, J.C. and Wyllie, P.J. (1983) Magnetite in the carbonatites from the Jacupiranga Complex, Brazil. American Mineralogist, 68, 195-213.
  7. Haggerty, S.E. (1991) Oxide mineralogy of the upper mantle. In: Lindsley, D.H. (ed.), Oxide minerals:petrologic and magnetic significance. Reviews in Mineralogy, 25, Mineralogical Society of America, Washington, D.C., 355-416.
  8. Haggerty, S.E. (1994) Upper mantle mineralogy. Journal of Geodynamics, 20, 331-346.
  9. Horn, I., Foley, S.F., Jackson, S.E., and Jenner, G.A. (1994) Experimentally determined partitioning of high field strength- and selected transition elements between spinel and basaltic melt. Chemical Geology. 117, 193-218. https://doi.org/10.1016/0009-2541(94)90128-7
  10. Karchevsky, P. I. and Moutte, J. (2004) The phoscorite-carbonatite complex of Vuoriyarvi, northern Karelia. In: Wall, F. and Zaitsev, A.N. (eds.), Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Mineralogical Society Series 10, The Mineralogical Society of Great Britain & Ireland, 163-200.
  11. Kim, S.J., Lee, H.K., Yin, J., and Park, J.K. (2001) Fe-REE Mineralization of the Hongcheon-Jaeun District. Economic and Environmental Geology, 34, 319-328 (in Korean with English abstract).
  12. Kim S.J., Lee, H.K., Yin, J.W., and Park, J.K (2005) Chemistry and origin of monazites from carbonatite dikes in the Hongcheon-Jaeun district, Korea. Journal of Asian Earth Sciences, 25, 57-67. https://doi.org/10.1016/j.jseaes.2004.01.008
  13. Kim, W.J., Park, N.Y., and Kim, S.U. (1966) Investigation report on the Hongcheon iron deposits. Geological Survey of Korea, Geology and Ore Deposits Investigation Report, 9, 31-78.
  14. Kjarsgaard, B.A. and Hamilton, D.L. (1989) The genesis of carbonatities by immiscibility. In: Bell, K., (ed.), Carbonatites: Genesis and Evolution. Chapman and Hall, London, U.K., 388-404.
  15. Krasnova, N.I., Balaganskaya, E.G., and Garcia, D. (2004) Kovdor - classic phoscorite and carbonatites. In: Wall, F. and Zaitsev, A.N. (eds.), Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Mineralogical Society Series 10, The Mineralogical Society of Great Britain & Ireland, 99-132.
  16. Kukharenko, A.A., Orlova, M.P., Bulakh, A.G., Bagdasarov, E.A., Rimskaya- Korsakova, O.M., Nefedov, E.I., Ilinskiy, G.A., Sergeev, A.S., and Abakumova, N.B. (1965) The caledonian complex of Ultramafic, Alkaline Rocks and Carbonatites of the Kola Peninsula and Northern Karelia. Nedra, Leningrad, Russia, 772p. (in Russian).
  17. Lee, C.H. and Lee, S.H. (1989) Petrological studies on the genesis of the Hongcheon iron deposits, Korea. Journal of the Geological Society of Korea, 25, 239-258 (in Korean with English abstract).
  18. Lee, H.Y., Koh, S.M., Hong, S.S., and Kim, J.H. (1991) Metamorphism in the Hongcheon area, Korea. I. Petrology, Pressure, and Temperature. Journal of the Geological Society of Korea, 27, 339-356 (in Korean with English abstract).
  19. Lee, H.Y., Park, J.K., and Hwang, D.K. (2002) Petrography of Hongcheon Fe-REE Deposits. The Journal of the Petrological Society of Korea, 11, 90-102 (in Korean with English abstract).
  20. Lee, M.J., Garcia, D., Moutte, J., Williams, C.T. and Wall, F. (2004) Carbonatites and phoscorites from the Sokli complex, Finland. In: Wall, F. and Zaitsev, A.N. (eds.), Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. Mineralogical Society Series 10, The Mineralogical Society of Britain & Ireland, London. 133-162.
  21. Lee, M.J., Lee, J.I., and Moutte, J. (2005) Compositional variation of Fe-Ti oxides from the Sokli complex, northeastern Finland. Geosciences Journal, 9, 1-13. https://doi.org/10.1007/BF02910549
  22. Lee, S.H. (1998) Geochemistry of minerals in the Hongcheon magnetite deposits, Korea. The Journal of the Petrological Society of Korea, 7, 98-110 (in Korean with English abstract).
  23. Le Maitre, R.W. (2002) Igneous Rocks. A Classification and Glossary of Terms. Cambridge University Press, Cambridge, U.K, 236p.
  24. Mitchell, R.H. (1978) Manganoan magnesian ilmenite and titanian clinohumite from the Jacupiranga carbonatite, Saopaulo, Brazil. American Mineralogist, 63, 544-547.
  25. Mitchell, R.H. (2005) Carbonatites and Carbonatites and Carbonatites. The Canadian Mineralogist, 43, 2049-2068. https://doi.org/10.2113/gscanmin.43.6.2049
  26. Oh, Y.B., Park, J.R., Shin, D.B., and Lee, M.J. (2010) Petrography of Hongcheon carbonatite-phoscorite complex. Journal of the Geological Society of Korea, 46, 367-380 (in Korean with English abstract).
  27. Park, J.K. and Hwang, D.H. (1995) Investigation on rare metals mineral resources of the Precambrian Fe-mineralized district (II) (Hongcheon-Jaeun). Korea Institute of Geology, Mining & Materials, KR-95(c)-10 KIGAM research report (in Korean with English abstract).
  28. Park, J.K. and Lee H.Y. (2003) Petrochemistry of the Hongcheon Fe-REE ore deposit in the Hongcheon area, Korea. The Journal of the Petrological Society of Korea. 12, 135-153 (in Korean with English abstract).
  29. Prins, P. (1972) Composition of magnetite from carbonatites. Lithos, 5, 227-240. https://doi.org/10.1016/0024-4937(72)90072-2
  30. Reguir, E.P., Chakhmouradian, A.R., Halden, N.M., Yang, P., and Zaisev, A.N. (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogists, 46, 879-900. https://doi.org/10.3749/canmin.46.4.879
  31. Righter, K., Leeman, W.P., and Hervig, R.L. (2006) partitioning of Ni, Co and V between spinel-structured oxides and silicate melts: Importance of spinel composition. Chemical Geology, 227, 1-25. https://doi.org/10.1016/j.chemgeo.2005.05.011
  32. Secher, K. and Larsen, L.M. (1980) Geology and mineralogy of the Sarfartoq carbonatite complex, southern West Greenland. Lithos, 13, 199-212. https://doi.org/10.1016/0024-4937(80)90020-1
  33. Shin, B.W., Hong, M.S., Lee, Y.D. and Park, B.S (1975) Geologic map of Jaeun. Geological and Mineral Institute of Korea, 16p.
  34. Streckeisen, A. (1980) Classification and nomenclature of volcanic rocks, lamprophyres, carbonatites and melilitic rocks. IUGS Subcommission on the Systematics of Igneous Rocks. Geologische Rundschau, 69, 194-207. https://doi.org/10.1007/BF01869032
  35. Toplis, M.J. and Corgne, A. (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contributions to Mineralogy and Petrology, 144, 22-37. https://doi.org/10.1007/s00410-002-0382-5
  36. Wolley, A.R. (1989) The spatial and temporal distribution of carbonatites. In: Bell, K. (ed.), Carbonatites, Genesis and Evolution. Unwin Hyman, London, 15-37.