DOI QR코드

DOI QR Code

Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis

  • Zhang, Yuan-Yuan (Faculty of Pharmacy, Bengbu Medical College) ;
  • Liu, Hao (Faculty of Pharmacy, Bengbu Medical College)
  • Published : 2013.12.31

Abstract

Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer research. Necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinases 1 and 3 (RIP1 and RIP3), mixed lineage kinase domain-like (MLKL), and phosphoglycerate mutase 5 (PGAM5) and can be specifically inhibited by necrostatins. Not only does necroptosis serve as a backup cell death program when apoptosis is inhibited, but it is now recognized to play a pivotal role in regulating various physiological processes and the pathogenesis of a variety of human diseases such as ischemic brain injury, immune system disorders and cancer. The control of necroptosis by various defined trigger factors and signaling pathways now offers the opportunity to target this cellular process for therapeutic purposes. The purpose of this paper is to review current findings concerning the connections between various trigger factors and the RIP1/RIP3 signaling pathway as it relates to necroptosis.

Keywords

References

  1. Alexopoulou L, Holt AC, Medzhitov R, et al (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature, 413, 732-8. https://doi.org/10.1038/35099560
  2. Andera L (2009). Signaling activated by the death receptors of the TNFR family. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 153, 173-80. https://doi.org/10.5507/bp.2009.029
  3. Bao L, Li Y, Deng SX, et al (2006). Sitosterol-containing lipoproteins trigger free sterol-induced caspase-independent death in ACAT-competent macrophages. J Biol Chem, 281, 33635-49. https://doi.org/10.1074/jbc.M606339200
  4. Budd RC, Yeh WCTschopp J (2006). cFLIP regulation of lymphocyte activation and development. Nat Rev Immunol, 6, 196-204. https://doi.org/10.1038/nri1787
  5. Chan FKBaehrecke EH (2012). RIP3 finds partners in crime. Cell, 148, 17-8. https://doi.org/10.1016/j.cell.2011.12.020
  6. Chan FK, Shisler J, Bixby JG, et al (2003). A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem, 278, 51613-21. https://doi.org/10.1074/jbc.M305633200
  7. Cho YS, Challa S, Moquin D, et al (2009). Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112-23. https://doi.org/10.1016/j.cell.2009.05.037
  8. Degterev A, Huang Z, Boyce M, et al (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol, 1, 112-9. https://doi.org/10.1038/nchembio711
  9. Feoktistova M, Geserick P, Kellert B, et al (2011). cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell, 43, 449-63. https://doi.org/10.1016/j.molcel.2011.06.011
  10. Festjens N, Vanden Berghe T, Cornelis S, et al (2007). RIP1, a kinase on the crossroads of a cell's decision to live or die. Cell Death Differ, 14, 400-10. https://doi.org/10.1038/sj.cdd.4402085
  11. Fricker N, Beaudouin J, Richter P, et al (2010). Model-based dissection of CD95 signaling dynamics reveals both a proand antiapoptotic role of c-FLIPL. J Cell Biol, 190, 377-89. https://doi.org/10.1083/jcb.201002060
  12. Galluzzi L, Vanden Berghe T, Vanlangenakker N, et al (2011). Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol, 289, 1-35. https://doi.org/10.1016/B978-0-12-386039-2.00001-8
  13. Golks A, Brenner D, Fritsch C, et al (2005). c-FLIPR, a new regulator of death receptor-induced apoptosis. J Biol Chem, 280, 14507-13. https://doi.org/10.1074/jbc.M414425200
  14. Han W, Li L, Qiu S, et al (2007). Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther, 6, 1641-9. https://doi.org/10.1158/1535-7163.MCT-06-0511
  15. He S, Liang Y, Shao F, et al (2011). Toll-like receptors activate programmed necrosis in macrophages through a receptorinteracting kinase-3-mediated pathway. Proc Natl Acad Sci U S A, 108, 20054-9. https://doi.org/10.1073/pnas.1116302108
  16. He S, Wang L, Miao L, et al (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100-11. https://doi.org/10.1016/j.cell.2009.05.021
  17. Hitomi J, Christofferson DE, Ng A, et al (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell, 135, 1311-23. https://doi.org/10.1016/j.cell.2008.10.044
  18. Holen I, Croucher PI, Hamdy FC, et al (2002). Osteoprotegerin (OPG) is a survival factor for human prostate cancer cells. Cancer Res, 62, 1619-23.
  19. Holler N, Zaru R, Micheau O, et al (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol, 1, 489-95. https://doi.org/10.1038/82732
  20. Hoshino K, Takeuchi O, Kawai T, et al (1999). Cutting edge: Tolllike receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol, 162, 3749-52.
  21. Hsu TS, Yang PM, Tsai JS, et al (2009). Attenuation of cadmiuminduced necrotic cell death by necrostatin-1: potential necrostatin-1 acting sites. Toxicol Appl Pharmacol, 235, 153-62. https://doi.org/10.1016/j.taap.2008.12.012
  22. Hymowitz SG, Christinger HW, Fuh G, et al (1999). Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell, 4, 563-71. https://doi.org/10.1016/S1097-2765(00)80207-5
  23. Jain MV, Paczulla AM, Klonisch T, et al (2013). Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med, 17, 12-29. https://doi.org/10.1111/jcmm.12001
  24. Kaiser WJ, Sridharan H, Huang C, et al (2013). Toll-like Receptor 3-mediated necrosis via TRIF, RIP3 and MLKL. J Biol Chem.
  25. Kemp TJ, Kim JS, Crist SA, et al (2003). Induction of necrotic tumor cell death by TRAIL/Apo-2L. Apoptosis, 8, 587-99. https://doi.org/10.1023/A:1026286108366
  26. Kim JW, Choi EJJoe CO (2000). Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP. Oncogene, 19, 4491-9. https://doi.org/10.1038/sj.onc.1203796
  27. Kim S, Dayani L, Rosenberg PA, et al (2010). RIP1 kinase mediates arachidonic acid-induced oxidative death of oligodendrocyte precursors. Int J Physiol Pathophysiol Pharmacol, 2, 137-47.
  28. Krammer PH (2000). CD95's deadly mission in the immune system. Nature, 407, 789-95. https://doi.org/10.1038/35037728
  29. Krueger A, Schmitz I, Baumann S, et al (2001). Cellular FLICEinhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem, 276, 20633-40. https://doi.org/10.1074/jbc.M101780200
  30. Kumar H, Kawai TAkira S (2011). Pathogen recognition by the innate immune system. Int Rev Immunol, 30, 16-34. https://doi.org/10.3109/08830185.2010.529976
  31. Laird MD, Wakade C, Alleyne CH, Jr., et al (2008). Hemininduced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med, 45, 1103-14. https://doi.org/10.1016/j.freeradbiomed.2008.07.003
  32. Laster SM, Wood JGGooding LR (1988). Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J Immunol, 141, 2629-34.
  33. Lavrik INKrammer PH (2012). Regulation of CD95/Fas signaling at the DISC. Cell Death Differ, 19, 36-41. https://doi.org/10.1038/cdd.2011.155
  34. Li J, McQuade T, Siemer AB, et al (2012). The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell, 150, 339-50. https://doi.org/10.1016/j.cell.2012.06.019
  35. Li Y, Yang X, Ma C, et al (2008). Necroptosis contributes to the NMDA-induced excitotoxicity in rat's cultured cortical neurons. Neurosci Lett, 447, 120-3. https://doi.org/10.1016/j.neulet.2008.08.037
  36. Lin Y, Choksi S, Shen HM, et al (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptorinteracting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem, 279, 10822-8. https://doi.org/10.1074/jbc.M313141200
  37. Ma Y, Temkin V, Liu H, et al (2005). NF-kappaB protects macrophages from lipopolysaccharide-induced cell death: the role of caspase 8 and receptor-interacting protein. J Biol Chem, 280, 41827-34. https://doi.org/10.1074/jbc.M510849200
  38. Mahalingam D, Szegezdi E, Keane M, et al (2009). TRAIL receptor signalling and modulation: Are we on the right TRAIL? Cancer Treat Rev, 35, 280-8. https://doi.org/10.1016/j.ctrv.2008.11.006
  39. Marsters SA, Sheridan JP, Pitti RM, et al (1997). A novel receptor for Apo2L/TRAIL contains a truncated death domain. Curr Biol, 7, 1003-6. https://doi.org/10.1016/S0960-9822(06)00422-2
  40. Meurette O, Huc L, Rebillard A, et al (2005). TRAIL (TNFrelated apoptosis-inducing ligand) induces necrosis-like cell death in tumor cells at acidic extracellular pH. Ann N Y Acad Sci, 1056, 379-87. https://doi.org/10.1196/annals.1352.018
  41. Meurette O, Rebillard A, Huc L, et al (2007). TRAIL induces receptor-interacting protein 1-dependent and caspasedependent necrosis-like cell death under acidic extracellular conditions. Cancer Res, 67, 218-26. https://doi.org/10.1158/0008-5472.CAN-06-1610
  42. Micheau OTschopp J (2003). Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell, 114, 181-90. https://doi.org/10.1016/S0092-8674(03)00521-X
  43. Moquin DChan FK (2010). The molecular regulation of programmed necrotic cell injury. Trends Biochem Sci, 35, 434-41. https://doi.org/10.1016/j.tibs.2010.03.001
  44. O'Donnell MA, Legarda-Addison D, Skountzos P, et al (2007). Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol, 17, 418-24. https://doi.org/10.1016/j.cub.2007.01.027
  45. O'Donnell MA, Perez-Jimenez E, Oberst A, et al (2011). Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol, 13, 1437-42. https://doi.org/10.1038/ncb2362
  46. Oberst A, Dillon CP, Weinlich R, et al (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3- dependent necrosis. Nature, 471, 363-7. https://doi.org/10.1038/nature09852
  47. Oettgen HF, Carswell EA, Kassel RL, et al (1980). Endotoxininduced tumor necrosis factor. Recent Results Cancer Res, 75, 207-12. https://doi.org/10.1007/978-3-642-81491-4_32
  48. Pan G, Ni J, Wei YF, et al (1997a). An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science, 277, 815-8. https://doi.org/10.1126/science.277.5327.815
  49. Pan G, O'Rourke K, Chinnaiyan AM, et al (1997b). The receptor for the cytotoxic ligand TRAIL. Science, 276, 111-3. https://doi.org/10.1126/science.276.5309.111
  50. Poltorak A, He X, Smirnova I, et al (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085-8. https://doi.org/10.1126/science.282.5396.2085
  51. Sheridan JP, Marsters SA, Pitti RM, et al (1997). Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science, 277, 818-21. https://doi.org/10.1126/science.277.5327.818
  52. Sun L, Wang H, Wang Z, et al (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213-27. https://doi.org/10.1016/j.cell.2011.11.031
  53. Tenev T, Bianchi K, Darding M, et al (2011). The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell, 43, 432-48. https://doi.org/10.1016/j.molcel.2011.06.006
  54. Upton JW, Kaiser WJMocarski ES (2010). Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe, 7, 302-13. https://doi.org/10.1016/j.chom.2010.03.006
  55. Van Herreweghe F, Festjens N, Declercq W, et al (2010). Tumor necrosis factor-mediated cell death: to break or to burst, that's the question. Cell Mol Life Sci, 67, 1567-79. https://doi.org/10.1007/s00018-010-0283-0
  56. Vandenabeele P, Galluzzi L, Vanden Berghe T, et al (2010). Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol, 11, 700-14. https://doi.org/10.1038/nrm2970
  57. Vanlangenakker N, Vanden Berghe T, Bogaert P, et al (2011). cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ, 18, 656-65. https://doi.org/10.1038/cdd.2010.138
  58. Vercammen D, Brouckaert G, Denecker G, et al (1998). Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J Exp Med, 188, 919-30. https://doi.org/10.1084/jem.188.5.919
  59. Vercammen D, Vandenabeele P, Beyaert R, et al (1997). Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine, 9, 801-8. https://doi.org/10.1006/cyto.1997.0252
  60. Wang L, Du FWang X (2008). TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 133, 693-703. https://doi.org/10.1016/j.cell.2008.03.036
  61. Wang Z, Jiang H, Chen S, et al (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148, 228-43. https://doi.org/10.1016/j.cell.2011.11.030
  62. Wu W, Liu PLi J (2012). Necroptosis: an emerging form of programmed cell death. Crit Rev Oncol Hematol, 82, 249-58. https://doi.org/10.1016/j.critrevonc.2011.08.004
  63. Wyllie AH, Kerr JFCurrie AR (1980). Cell death: the significance of apoptosis. Int Rev Cytol, 68, 251-306. https://doi.org/10.1016/S0074-7696(08)62312-8
  64. Xu X, Chua CC, Kong J, et al (2007). Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem, 103, 2004-14. https://doi.org/10.1111/j.1471-4159.2007.04884.x
  65. Zhang QL, Niu Q, Ji XL, et al (2008). Is necroptosis a death pathway in aluminum-induced neuroblastoma cell demise? Int J Immunopathol Pharmacol, 21, 787-96. https://doi.org/10.1177/039463200802100403

Cited by

  1. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death vol.5, pp.7, 2014, https://doi.org/10.1038/cddis.2014.287
  2. Pivotal Role of Receptor-Interacting Protein Kinase 1 and Mixed Lineage Kinase Domain-Like in Neuronal Cell Death Induced by the Human Neuroinvasive Coronavirus OC43 vol.91, pp.1, 2017, https://doi.org/10.1128/JVI.01513-16