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ASYMPTOTIC EXPANSION OF THE BERGMAN KERNEL
FOR TUBE DOMAIN OF INFINITE TYPE

HANJIN LEE

ABSTRACT. The asymptotic expansions of the Bergman kernels on the
diagonals near the boundary points of exponentially-flat infinite type for
pseudoconvex tube domain in C2 are obtained.

1. Introduction

The studies of boundary behavior of Bergman kernel have been important
topic for a long time related to the analysis of holomorphic functions for pseu-
doconvex domains. The boundary geometries of the domains determine the
growth rates of the Bergman kernels near the given boundary points. For
strongly pseudoconvex domain in C”, the boundary behavior of Bergman ker-
nel is well understood by the works of Diederich [5], Héormander [8] and Feffer-
man [7]. In particular, Fefferman obtained the asymptotic expansion formula
for the Bergman kernel on the diagonal near C'°° smooth strongly pseudocon-
vex boundary point. For the weakly pseudoconvex domain of finite type in the
sense of D’Angelo, there have been considerable and significant achievements.
To cite only a few, we list here only [2, 3, 4, 6, 14]. In particular, Kamimoto ob-
tained asymptotic expansions for the domains which have circular symmetries
[10] and for finite type tube domains [9, 11].

However, there are very few results for infinite type boundary points. Kim
and Lee [12] analyzed Bergman kernel near the exponentially-flat infinite type
boundary point for model domain using scaling method. Bharali [1] obtained
upper and lower bound estimates of the Bergman kernel near the mildly infinite
type boundary point for model domain.

In this paper we obtain an asymptotic expansion of the Bergman kernel func-
tion B(z, z) for any point z near an exponentially-flat infinite type boundary
point zg of a pseudoconvex tube domain in C2.

We use Koranyi-Vinberg integral representation of the Bergman kernel for
tube domain. Since the singularity of the Bergman kernel near given boundary
point is determined by local geometry of the boundary, analysis is focused on
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localized representation of original Koranyi-Vinberg representation. As in the
case of finite type, singularity can be stratified by a real blowing up in the case
of infinite type.

Since the principal part of defining function for finite type case gives quasi-
homogeneous model, the analysis of the Bergman kernel near finite type bound-
ary point focuses on how to handle a perturbation of model case. On the other
hand, we don’t have such a model for infinite type case. For this reason, first
of all, a real blowing up of the infinite type point is constructed using defining
function itself. In addition, a proper flat condition for the defining function is
needed to analyze the principal part of singularity expansion. Our condition
controls the growth of derivatives of all order of the defining function at the
infinite type boundary point such that the principal part of expansion formula
extends to the horizontal boundary in stratification. Since f(t) = exp(%)
satisfies that condition, we call our condition exponentially-flat. Under this
growth condition, it will be shown that all the coefficients of expansion in
vertical direction vanish.

2. Statement of main theorem

Let Q be a domain in C?. Denote by A?(Q2) the closed subspace of L?(Q2)
consisting of holomorphic functions. Take a complete orthonormal basis {¢,};
of A%2(€)). The Bergman kernel B(z) = B(z, z) of  (on the diagonal) is defined
by B(z) = 32; ;i (2)[.

Given a domain w in R?, the tube domain over the base w is defined by

Q=R’+ivw={z=0+iyc C*: 2 c R} ycw}.

Here we set © = (z1,22), ¥y = (y1,¥2), 2 = (21,22). It is known that Q is
pseudoconvex if and only if w is convex. We assume that w is convex with
C*°-smooth boundary. Suppose the boundary point zy = xg + typ is of infinite
type. That is, there exists a coordinate system (y, Vy,) such that

(2.1) wN Vi ={(y1.52) ER* 12> f(11)},

where f is nonnegative, convex and C'*°-smooth, satisfies f(0) = 0 and vanishes
to infinite order at y; = 0, that is, lim;_o f(¢)/[t|" = 0 for each N € Z.

In this article, we will use the notation A(t) ~ B(t) in place of lim; 4 |%|
is finite and nonzero constant. For positive valued function A(t) and B(t), we
will also use the notation A(t) < B(t) if there exists C(t) which is positive
constant or satisfies lim;_,o4 C(¢) > 0 such that A(t) < C(¢t)B(t) near t = 0.

We say that the boundary point zg € 02 is exponentially-flat, if there exists
a coordinate system such as (2.1) such that

fB0 om
(2.2) 0 ~ ¢~ @mADk,

In particular, f(t) = exp(—+) satisfies exponentially-flat condition.
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We say that the boundary point zg is quasi-symmetric if the defining function
f additionally satisfies following: if there exist positive constants d and e such
that f(—t) = f(dt) for 0 <t <e.

Consider a real blowing up of the origin for quasi-symmetric function f as
follows: 7 : (—1/d,1) x (0,€) — w N {(y1,¥y2) : y2 < L} for some positive
constant L such that 7(7,p) = (y1,y2), where y1 = 7p,y2 = f(p). Then the
main theorem of this article is as follows:

Theorem 2.1. Let zg = xo +iyo be a non Levi-flat, exponentially-flat infinite
type and quasi-symmetric boundary point of Q). There exists a neighborhood V
of yo and € such that for (1,p) € (—1/d,1) x (0,¢) C 7= 1(V Nw) and x near xq

(2.3) B(z +in(T,p)) = p~2f(p) 2 Bo(1, p), (mod smooth kernel)

where By(T, p) is a C*° smooth function on (—1/d,1)x (0, €) satisfies followings:
(1) Bo(t,p) extends C* smoothly to (—1/d,1) x [0,€).
(2) Bo(t,p) has the following asymptotic expansion with respect to p : for
each N > 1, there exists Ry (T, p) € C((—1/d,1) x [0,€)) such that
Bo(7,p) = b(7) + R (7, p)p"
on (—1/d,1) x (0,€) where b(t) is in C*°(—=1/d,1) and
By (r,p)| S p~ O N (p) - asp— 0+

Remark 1. The principal term b(7) tells us that tangential limits of Bergman
kernel depend on orbits approaching to the origin. Each vertical line {7} X
(0, po) is mapped by 7 to {y2 = f(y1/7) : 0 < y1 < Tpo}, which is a tangential
orbit to the origin. Then

00 ap/f(p) 1
= lim —2/ e / e 2Tsv s2ds
p—=0+ 212 g —ap/$(0) fj/;p e=2slow+£(pw)/ £ (p)] dw
for —1/d <7 < 1.

Remark 2. Our theorem still holds for infinite type points which become flat
less rapidly than exponentially-flat case. The defining function

1 1
f(t) = exp <tQ—m log m)

becomes flat less rapidly than exponentially-flat case. It holds that for any

(k)
positive constant o there exists a neighborhood U, of 0 such that |£ f(t()t)| S

t—(2m+1)k—oz

whenever t € U,. All the estimates still work under this growth
condition with minor change.
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3. Integral formula for tube domain

For y = (y1,¥2),u = (u1,u2) in R?, we set (y,u) = y1us + yauz. It is shown
in [13], [15] that the Bergman kernel of a tube domain 2 = R? +iw is expressed
as

1 1
1 B(2) =Bz +iy) = — | e 2Wuw__—_g
(3 ) (Z) (1' Zy) 47‘[‘2 /A* € QD(U) U,

where
o(u) = / e 2w gy
and A* = {u € R? : p(u) < oo}. We LIdleed to express A* in a different form to
compute the Bergman kernel. For a convex set w we define its recession cone
A, ={yeR?:v+tycwforalvewt>0}.
Then for unbounded w, we have
A ={u € R*: (u,y) >0 for y € A, }.

For R > 0, set Bg = {y1 € R: f(y1) < R}, Br = {y1/R : v € Bgr} and
B= mR>OBR- Then

Ay = {(s91,8) €ER? : 5> 0,9, € B}.
Thus we have

A* = {(tin,t) e R* : £ > 0,104 € B*},
where

B*={a; e R: U191 +1 >0 for 1 € B}.

For our case B* = R, thus

. L[> _
B(z +1y) = 2_772/ e R (yy, t) 7L,
0
A 1
3.2 F(y,t) = [ e ————di
(32) (y1,1) /Re D, i) ur,

D(t, 1) :/efm[f(w”ﬁlw]dw.
R

4. Localization

Localization for integral representation of the Bergman kernel allows us to
analyze its singularity using only local geometry around infinite type boundary
point. Localization of Bergman kernel for tube domain were introduced in [9],
[11]. We follow the arguments in [11]. Let U be an open interval containing
the origin. Then we define

1 / , 1
By(z) = — e 2w —_dy,
v(2) a2 Jx- ) p(u)

A*(U) := {(tay,t) €ER* 1t >0, 4y € U}

where
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and

where

we(u) = / e 2w gy,
wN[(—e,e) XR+]

The following localization arguments hold if the defining function f of w satisfies
f@®) =o(|t]) ast — 0.

Proposition 4.1 (Kamimoto). For any open interval U containing the origin,
B(z) — By(z) is real analytic near the origin.

Proposition 4.2 (Kamimoto). For any e > 0, there exists U such that By (z)—
Bu.e(z) is real analytic near the origin.

Thus, for our purposes, it suffices to obtain the asymptotic expansion of
BU,e(Z)-

5. Proof of main theorem

The localized representation of the Bergman kernel is as follows:

1 %S
Ba,e(y1,92) = ﬁ/ et Foe(yy; ) dt,
0
. ¢ —2ty1u 1
Fa,E(yly t) = e mdu,

D (t,u) = /E e 2wt f ()] goy,

where a depends on the choice of € according to Proposition 4.2. By the
blow-up coordinate system 7 (7, p) = (7p, f(p)), (1,p) € (=1/d,1) x (0,¢) the
representation in (3.2) changes into

(5.1) Ba,o(®(7,0)) = p 2 f(p) *Ka,e(T,p),
1 oo
Koe(1,p) = ﬁ/o e 5% Fy (7, p; 8)ds,
(opis)= [ ez L
Foe(m,p;s :/ eIV,
— De(p;s,v)

¢/
De(p;s,v) :/ ’ e~ 2slowtS(pw)/F(P)] oy,
—€/p
where 11 = ap/ f(p).
We decompose the integral K, . of (5.1) as follows:

0o 1 f(p)

1 —z8 —z8
K%G(Ta P) = ﬁ /f( )e 2 Fa,e(Ta p;S)SQ ds + ﬁ A e ? Fa,e(Ta p;S)SQ ds
p

= KWV (7, p) + K2 (7, p).

a,e a,e
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We will show that boundary values of derivatives of thlg (1,p) at p = 0 equal

0 in Proposition 5.1 and p_2f(p)_2K,g,2€) (7, p) is real analytic in p and f(p) in
Proposition 5.2. It will prove the main theorem.

5.1. Growth estimate of derivative of K((lfe)

In this section we will use the notation 9} in place of % whenever we need
to simplify expression.

Proposition 5.1. Suppose that [ satisfies exponentially flat condition (2.2) at
the origin. Then

07 o K (7, p)| S p~ N3 (p) as p — 0+
for =1/d<7<1andn>1,n" >0.
Proof. We have
o' oK) (7,p)

n—1
(52) = =D TR () f(p)2e D O ONFy (7, i 5)|s—p(p))
k=0
+ Y e POV OF, (7, p;5) s ds
272 J 1) "
for n > 1. The first part of (5.2) is estimated as follows. Set
K 1
5.3 Fé’? T, P; S :/ Rl | —— /)
(53) o ) - " De(p; s,v)
, 1
+ . _ 1 _—2Ts
Qj (1,p;s) = p'e “Q@mbzm
(5.4) 1
— . _ 1 2Ts 1
Q; (1,p;s) = p'e “%mh:—u-

Then we have
(5.5)

k—1
0L OF Fue(rpis) =Y L0r OF ' 9(QF +Q;) +0i0r FR,  k>1.
j=0

By Lemma 6.6, we have
0,0 O I QT (7,3 ) |s= p(p) ~ p” BRI £ ()7L
By Lemma 6.5, we have

aﬁaf/Fé,@ (Ta P 5)|s:f(p)

3 4 a —27sv, n'+i 2 1
_ Z Cil,iQ Tzl(if(p))n / e—2Tsvy ' +ix 8528§Hdv|szf(p)
i1 ia=i K ¢

~ p7(2m+1)k+n +2f(p)fi71.
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They imply
(56) (D507 0 Fa.e)la= () ~ p~ EmEDRH L () =,
Using (5.6) and derivative condition on f we have

. n/ k
03((02 05 Fu)ls—s(0)
= (07 05 Fae)|e=f(p)

j=1 =5
AN @O T Fa ey Y. f) o)
Jj’=0j5"=1 a1+»-»+aj//:j—j’

apaa >0

(57) -~ p7(2m+1)(k+j)+n'+1f(p)fl.
By
95 (f'(p)f(p)*e )

J
— 1) Z Z Con oo s e (p) - flasss)(p)

7'=0 a1+~~~+aj/+3:j+l

~ G ()3

and (5.7) we have
(5.8)

n—1

Z agflfk(f/(p)f(p)Qeff(p) 5:},@5}7‘&,6(7', p; S)lS:f(p)) ~ p*(2m+1)n+n’+lf(p)2.
k=0

The second part of (5.2) is separated by (5.5) as

/ e 2 Gf/agFa,e(T, p;8) s2ds
f(p)

(5.9) - ni /

e
0 f(p)

+ / e s af/Féf? (1, p; 5) s%ds.
f(p)

“2 ' grI(QF 4 Q7 ) (7, pr ) 52

The first part of (5.9) is estimated by following lemma.

Lemma 5.1. Under the assumptions of Proposition 5.1,

/ e N NI QE (1, pys) s2ds| S pm BT D=2 p ()2
f(p)

forj=0,1,...,n—1.
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Proof. Estimation of integration of derivatives of (5.4) requires a revised equa-
tion of (6.16) which is not evaluated at s = f(p). Applying Lemma 6.7 to the
first line of (6.16), we have

1 . Jati—g
ot (i) et o (3558

1=1j"=1 k=0
ati )
+chqu)(p; S)skffk‘ ,
k=0

where C(‘”,), x(p3s) = O(1) and C,iq’j)(p;s) = O(1) as p — 0+. Applying it
and (6. 15) into (6.14), we have
n' an—1—j =+ .
67' ap ]Q]‘ (Ta pvs)

—(2m+1)(n—1)+n'+1 p—n'—1 _n’ 1
VX Gy OIS

q1t+g2=n—1—j €

a i axti-g’ a2+j
Z ZZ Z C(fnl) p55] +1€+7‘f]71€ r+ZC(12/ ps k+rf k—r .
r=0 j'=15"=1 k=0 k=0

Set
fo(t) = max{f(t), f(—t)} for 0 <t<e.
It holds that

D.(p; 8,0)|v=p > /€ e~ 25(uw+f(pw)/ (0)) qop

o—2sfo(ep)/ 1 () SID(2en5)

1 z
(5.10) e s
1— —4daep
> 62(fo(ép)/f(P)JrE#)S(e%f(p)s1 for s > f(p)
It implies that
/ =2 g gr 1 QF 52 ds
f(p)
D S ) s

q1+qe=n—1—j

0 a2 J ati—i’ ., ., , q2+j ,
/ Z Z Z f —j —k—'r'sj +k+r+n'+2 + Z f(p)—k—'r'sk+7'+rL +2 ds
f(p) J'=1j"=1 k=0 k=0

p~BmER(=D=2 f(5)2,
where A =1 — f;g;’; + u(|7] + €). It proves the lemma. O

The boundary limit of the second integral of (5.9) is estimated as follows.
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Lemma 5.2. Under the assumptions of Proposition 5.1,

[ e o B i) s ds| < 2
f(p)

for —1/d<71<1,n>1.

Proof. By Lemma 6.4 there exist bounded functions El(p) (p; s,v) € C([0, po) X
R4 x R) such that

oY F (7, py s)

| ey oo
_ e 2TV (_a\ VO — o
o ? De(p; s,v)
N " (»)
—n—I—N, —p+l +n’ —27sv p . I+n’
~ ZZ P Lf(p) pri gp /_ e El (p,S,’U) m’l} d’U,
p=0 =0 H

where N, = 0 and N; = 2m(n — ) for [ < p. Using (5.10) we have

‘/# —275v E(;D)( ) 1 I+n’ d
e P;8,0) ————— v
iy ! Dc(p; s,v)

m 2sfo(pe)/ f
< / (672(6+\T\)sv + 672(67|T|)S7j)25v6 o(p2)/ (e) ,UlJrn'd,U
- 1 — e—2esv

0

It holds that

/M e—2(6i|‘r|)sv 2sv ,Ul-i-n/dv
0 1

_ 6—2651}

eQaep

ap
2s ’ ® ’
/2 67(25i|7|)5vvl+n dv + C(p)pfls/ 672(5:|:|'r|)svvl+n +1 0
0

ap

€
2s

-1
< (1/S+p :u)‘ulJrn'ef(e:I:h'D,us

S S sinh((e & [rl)ps).

where C'(p) = C > 0 as p — 0+. Thus
/ = 2s(1=folep)/£(p)) gpn'+2 [ / " o—atetlrhso_ 28V v g 1o
f(p) 0 1

_ 6—2651}
sinh (%lﬂ)
< —p+i-3 p—1+2
S f(p)

for |7] < e. It implies that for |7] < €
(5.11)

/ e 2 F, (1, p;8) 52 ds
f(p)

P

SIS NS () e BnS f(p)2,

p=0 [=0
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For |7| > €, by D.(p;s,v) = e~sfoler)/f(p)

00 7
/ e~ gt 42 [/ 2t L gy g
f(p) —u D.(p;s,v)

L)
fo(ep) .
< / 6_2(1_ oy —u\T\)éSp+n/+2ul+n/+1 ds
f(p)

~ p PR f(p)P R

Thus for |7]| > ¢,

/ e s 8" W (7, p; 5) 82 ds
f(p)

(5.12) n o p
S DD N R
p=01=0
It proves the lemma. O

Now by (5.8), Lemma 5.1 and Lemma 5.2, we obtain Proposition 5.1. O
5.2. Real analyticity of Ko
Proposition 5.2. p=2f(p)"2Ka(r, p) is real analytic in p and f(p).
Proof. Set Fj(r,p) = 18 I Fo (T, p; )| s=0. Then

N-1 f(p) _ f(p)
Fi(r / e 255712 der/ e~2 Fn (1, p;s) s’V F2ds.
0

7=0
We have
1 j & . neo
Firnp)== > < ><T>“chz,kpk“f<pw+k JARaRT
7t Jitiz=j g = —H
=p f -t ZCJ,] Tp
and
sup  |Fn(7,p;s)|
0<s<f(p)
< ( )‘T\“Zp‘kf (p) 2" sup / " T D (g5, 0)| - do
- NI ji4ja=N ]1 0<s<f(p) k " De

< Ceellrp?f(p)~N 1 Z C" nje (|7lp),

§'=0

where E,(ch) is bounded for v € R. In particular, C”n; < MY for 0 < j < N
for some positive number M. It completes the proof. [
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6. Proof of lemmas

In this section we will give proofs of lemmas which we use in the proof of
main proposition.

6.1. Estimates of derivatives of D, and Di

Here we present estimates of growths of derivatives of D, which we need to
estimate a"a"’a"Kéi through (5.1) and (5.2). The firsthand estimate is on
growth of derlvatlves of
have

W and its evaluation at v = p or s = f(p). We

e/p w € vu | Fu
De(p; 5,v) = / o~ 2s(vwt Lew)) dw = p 1/ o 2s(2 +§Epg)du.
—e/p —e

Set p(u,v;p) = = + fEZZ for convenience.

Lemma 6.1. Forq > 1,

OP0197 D¢ (p; s,v)

vYpYs
r

€
—p—g—1 p—r4r’ —sp D
~p S e " uf du

r’=max(r—p, O) €

+ Z prmatd Z Z D sptimrer /€ e Ol puP du,

=1 r'=max(r—p=j,0) |8|=q e
where |B] = B+ -+ B; and 8o = 9P -9 .
Proof. We have
oro19T D

vYps

T —p—1 ‘ —s
= 010y [(—s)pp P / e ‘Pupdu]

—€
€
b P [ O (—s)Pe P du
—€
q .
+ Z Z Z Coaqasp " L ar((*s)pﬂeiw)agsﬁupdu-
a'=1j=18|=¢
Using
T
OisPe )= D Crus e
r’=max(r—p,0)

we obtain the lemma. O
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Lemma 6.2. Suppose that [ satisfies exponentially-flat condition (2.2) at the
origin. Then

85838§D |U w,s=f(p) ~ P p—(2m+1)q—1f(p)p—r as p — 0+.

Proof. For 1+ -+ B; =,

(61) 007 plump ~ p~C VT ()7 (f(w) + Wy (p,w)),
where ¥,/ i(p,u) = O(p) as p — 0+. By Lemma 6.1
OO Dl y=pu 5= (p)

vYpYs
€ min(p,r)
~ p PO lf( T/ —s¢ Z (au+ f(u u”du
1=0

q q € min(p,r)

+ Y e Y [ et G+ B p)) S (et f() du
g=1 j=17-¢ 1=0

~ e e

Thus we have

S N

vYp SD
max(p.a.r) 00 OND, 019NN D, 1
SR DD S s

=1 |al=p,|Bl=g;|v|=r
~ P (.

We obtain the lemma. O

For such growth estimates of evaluations of the derivatives of D, as Lemma
6.2, (6.1) is enough. But if we want to estimate integral of derivatives of -, we

need more thorough estimate than (6.1). Set D, 4(p; s,v) = [*_e™*¢u? f(u)?du.

Lemma 6.3. Suppose that f satisfies exponentially flat condition (2.2) at the
origin. Then

Z / s 851 aﬁw du

Bit+Bi=q”
~ Z ol p 72D 00) () T Dy (s, ).

Proof. We have

j
g0l =" v~ f(u) p= T Hg 1y (p),
=0
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where
G LS
T L
)= 2 G\ 7 7
(B],B0)
where (B, ..., ;) is a rearrangement of (81,...,05;) a nd summation is taken
1

over all possible such rearrangements. Then since ((—) ~ p—(2m+1)pf(p)—1
)

Hpy ~ f(o)7 > Ca g p G0 0= (Bt

(B1--85)
~ f(p)! Z CB{,___7ﬂ;p—2m(51+»~+ﬂl)—q
(B1--85)

p 1 =0
~ p—q—2m(q—j+l)f(p)—l 1> 1.
It proves the lemma. O

Lemma 6.4. Under the same assumption of Lemma 6.3, for n > 1, there
exists El(p) (p; s, U) € C([0, po) x Ry x R) satisfying E(p) (p;8,v) S 1 such that

871 ~ —n—Il—N; —p+l sP (p;S,U) l
;8,0) ZZP flo D(p;s,v)v’

p=0 1=0
where N, =0 and Ny = 2m(n —1) forl <p.

Proof. Set ﬁp ¢ = Dp.q/De. Then by Lemmas 6.1 and 6.3, we have

8 D, . E
I ) YERD I R e
R Brovfy=ar T
1+Z <ZB(Q) 7o v)v l) =
J=1 \I=0
where
@ P~ Djo =7
B (p, s,v) = {p_qu_,_(zm—l)l f—j+l ﬁl,j—l 0<i<yj—-1
We have

%D, D1
D, D. D,

D

k=1 a1+ +ap=n
A1yeens ap >0

n

(6.2) ~ Y (s YD B (s o)l o
p=0 =0
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where

B(p) (p;s,v) Z Z Z Z Ba(laﬁ o J(S];Z

=1 a1+ +ﬂk "]1+ +ik=p lt+-Hl=l

o 1S90l <
Define

(6.3) E (p;5,0) = o N (o) B (5, 0),

where N, = 0 and N; = m(n — 1) for [ < p. Then E(p) < 1. It is proved

as follows. For I = p, B(p) is a sum of such terms as Bj(laﬁ B](ka’;i =

p—ijhO e Djk 0. For I < p, B( ?) is a sum of such terms as

B(al) B(ak) B(ak) .. (ak)

J1,d1 Y I IR P Jk Uk
— p_(J1+ i) —m(ags g1t Fon) Hm—1) (L g+ 4k)

Djo-Dj, 0Dy,

¢ +11jk/+1_lk’+1 T leajk_lk’

where k' satisfies 0 < k' < kand Iy = j1,..., Ik = Jr, a1 < Jrrat, -5k <
jk- Then the exponent of p=! is I +m{ (g1 —lgr41) + -+ (o — i) }. Since
(kr+1=ly+1)+- -+ (=) = p—land (k41— jfir+1) + - -+ (o —jix) < n—p,
the exponent of p~! <l —m(n —p+p—1) =1—m(n—1). The exponent of
Fp)7tis (Jwrs1 — lwsr) + - + (Jk — ) = p — . Tt completes the proof. [

6.2. Integrals of derivatives of Di

In this section we will estimate integrals in v of derivatives of It

1
De(pss,v)
require more thorough analysis than Lemma 6.2.

Lemma 6.5. Forqg>1

/I:L e Ty "8q8§ﬁ dv|s:f(p) ~ P7(2m+1)q+”+2f(p>*rfn—1
as p — 0+.
Proof. From Lemmas 6.1 and 6.3
(6.4)
10D |
D, s=f(p)

T
piq Z ’Urlpir f(PY 7TD’I“/,’I“7T/

r’=0

+pd i Z 3TN ol g =l D08 (o) P
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q q
S0 3 ) WAV REE TR i

where
: [y Dt jzror j<r i >r—j
0),(r,r r—r
(J7)( ) Z’l"”:’f’ j— T’Dl-i-’!‘ j—l4r j<r 0<T <T__7
and
2 (') Y Doy 1< d
q _ !’ ~
Dirany =\ Zi=1 Doy =4 >0
D(O,O),(r,r’) l = q/ = 0
Set
65) G, flp)v) = > Z Szl Pt 0<k<q+r
I+r'=k

0<I<gq, 0<7‘/<7‘

Then (6.4) has an expansion in v as follows:

a 8r q+r )
Jomtip) ~ SV pTIF L ()G (p, f(p)sw).

k=0

(6.6)

From (6.6) we have

et o19m D, 9% D, 1
p s € p s €
aZGSDI =1) ™ Z > D. ' D. D.
q1+-t+g;=q € € €
r1ttry=r
— (a.7) 1
—q—k k ’I“A q,r . =
(6.7) Z o) A (o, £ (p)s0) 5
where
(6.8)
(q,7) g ( ) (qi,r3)
CCEEED SR VR SR St A
=1 q1+-+a;=q ki1+-+k;=k

ri+-+ri=r 0<ky1<qy1+7r1,..., 0<k;<q;+r;

Since Dy <1 and D, 2 p~le s/()/1) | we have
(6.9)

. 1
AL (p, f(p): Ok

< —2mq+1’ k S r
|5:f(P) ~ p—2m(q+7‘—k)+1’ k> as p — 0+.

Since
€ 2p
/ e~ *du < smh(esv/p ecsv/p

—€
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and
L o=sf(9)/5(p), l: even
’ N > P
|Dl,l (P,s,’l})| =~ {% s|v|€75f(d€)/f(p) I: odd
p )
we have
_d), ]
. e . even
6.10 Dl,l’ s= z ’ »
(6.10) =70 {%| e, 1 odd,
By (6.5), (6.8) and (6.10), there exist nonzero integers N;, N/ such that
. 1
AL, F )i 0) 5| le=s0)
(611) Z;n:alx(q,r) p_2mq+1 (¥|v|)]\h e,€(i+1)@v’ k S r
> ,
= szdl)((qw) p2mlatr—k)+1 (@M)Ni 6_€(¢+1)¥v7 B>
as p — 0+. Since
Zk 2k
012) [ e toria - { AR ol
T .
— 2012 f(p) 1 o R+ D)I(2k+1+2)° l: odd
we have
(6.13)

o 1 —2maq+1+4; —1-1 k<
—7sv,.1 4(q7r) P f(p) ) =T
e v'A , 1) —dU| = #( ) ~
/# w (e, f(p) )D€ ls=£(p) {p—2m(q+r—k))+l+5zf(p)—l—l, E>r

where §; = 2 if [ is even and ¢; = 3 if [ is odd. By applying (6.13) to (6.7), we
obtain the lemma. O
6.3. Estimation of derivatives of Fy (T, p; s)

In the proof of Proposition 5.1, the main estimate of 8?/6,’}1((5712 (1,p) is
reduced to estimate of derivatives of Fy, (7, p; ), which is decomposed into two
parts by (5.5). Recall that the first part is given by the sum of

., . 1
k—1—jan + . _ Ak—1—jgn —uTs aj
1901 Q) (i) = 00 (e 0l )

We will estimate of the growths of them evaluated at s = f(p) and of its
integrals in s.

Lemma 6.6. Suppose that f satisfies exponentially flat condition (2.2) at the
origin. Then

00 010 QF (7, 1:8) gy ~ p BTV HIFD L p() =
as p — 0+.
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Proof. We have
(6.14)

n’ ~+

97 03 07 Q;

’ ’
~ Y G (=) TP QDAL (i €I 9P2 0 (aﬂ—|v iu)
q1,92
po+pr1+p2=p
q1+a2=q

Since
(6.15)
AP oD (1 " )

( ) ((I/Nn +P1 (@) 4 Z(N/ﬂn +P1 (q1=1) Z Z —75)" (ﬁl ...’u(ﬁr-)) e HTS

r=1|8|=l

~ § p1+r r 7(2m+1)(q1+1)+n +p1+r+1f( ) nlfplfrflef,uﬂ's

for g1 > 0 and by Lemma 6.2

1
(6.16)  9r29® (a,J)_|v—,u) |s=£(p)

Z Z 31123] q2+J J’L Mompismf(p) Z c., M(oa ...M(aj//)

/ 1J// 1 ‘al ]
1
(5’”5"2“1) )v=pu,5=(p)
p—(2m+1)(qz+J)f(p)

for g2 > 0 we have

(6.17) 85835? Q]ﬂ_t (7, p; S)'s:f(p) ~ p—(2m+1)(q+j+1)+1f(p)—p—1_
It is desired estimate. (]

When we integrate derivatives of jS (1,p;s) in s, a replacement of (6.16),
which is not evaluated at s = f(p), is needed.

Lemma 6.7. There exist continuous functions L, 4 x(p;s) on (0,po) x Ry,
which are bounded as p — 0+, such that

1 I 1
P 5a o~ —p—(2m+1)q§ p+k -k . o
avap D (p’ s, ’U) |’U7M P k:O S f(p) (p,q),k(p7 S) De |’U—M

Proof. By Lemma 6.1 and Lemma 6.3 we have

oP1D, e
(6.18) Bl ~ 7Y S ()T Ly (5 5),
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where

(6.19)  Lyj(p;s) =

DP70|v:,u 7=0
- L .
Dpyjolo=p + 2120 p7 2™ DDy i lomy 4> 1.

Then
ool = ma"z(’”” D D 1
veD ST , _ D. D. D"
=1 p1+-+pi=p
q1+--+a;=q
q
(6'20) ~ Z p7p7(2m+1)qf(p)ik Serk L(p,q),k(p; S),
=0
where
Lip.q).1(p; 8)
max(p,q)
2
=p~™ Z Z Z Ly g+ Ly, g
i=1 p1+-+pi=p Ji+-+ii=k
q1+-+a;=q 0<j1<q1,.-., 0<j;<q;
max(p,q)

~ > > > Dpysjio+ Dpivjoo+ O(p)

=1 ;D1+“‘+;Di:p Vj1+u,+ji:lvg

as p— 04 and [Dp, 44,0 Dp.1jio] < 1. It completes the proof. O
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