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GLOBAL ATTRACTOR FOR COUPLED

TWO-COMPARTMENT GRAY-SCOTT EQUATIONS

Xiaopeng Zhao and Bo Liu

Abstract. This paper is concerned with the long time behavior for the
solution semiflow of the coupled two-compartment Gray-Scott equations
with the homogeneous Neumann boundary condition on a bounded do-
main of space dimension n ≤ 3. Based on the regularity estimates for the
semigroups and the classical existence theorem of global attractors, we
prove that the equations possesses a global attractor in Hk(Ω)4 (k ≥ 0)
space.

1. Introduction

In this paper, we study a coupled two-compartment Gray-Scott equation,
which is a four-component reaction-diffusion system [4, 9, 15].

ut = d1∆u− (F + k)u+ u2v +D1(w − u),(1.1)

vt = d2∆v + F (1− v)− u2v +D2(z − v),(1.2)

wt = d1∆w − (F + k)w + w2z +D1(u − w),(1.3)

zt = d2∆z + F (1 − z)− w2z +D2(v − z),(1.4)

for t > 0, on a bounded domain Ω ⊂ R
n, n ≤ 3, the equations (1.1)-(1.4) have

the following boundary conditions

(1.5)
∂u

∂ν
(t, x) =

∂v

∂ν
(t, x) =

∂w

∂ν
(t, x) =

∂z

∂ν
(t, x) = 0, t > 0, x ∈ ∂Ω,

and initial conditions

(1.6)
u(0, x) = u0(x), v(0, x) = v0(x),

w(0, x) = w0(x), z(0, x) = z0(x), x ∈ Ω,

where d1, d2, F, k,D1, and D2 are positive constants.
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As is well-known, the Gray-Scott model was originally a system of two ordi-
nary differential equations describing the kinetics of cubic autocatalytic chem-
ical or biochemical reactions (see [5, 6, 7]). Assume A is an autocatalytic
reactant which decays to form a product P in the irreversible reactions shown
above, while B is another reactant for which higher concentration beyond a
certain level increases the rate of its own removal, then the kinetics describes
the following scheme of chemical reactions:

2A+B
k1−→ 3A, A

k1−→ P,

where k1 is the reaction rate constant. Then by the law of mass action and the
Fick’s law, one obtain a system of two nonlinear reaction-diffusion equations
which called the Gray-Scott equations:

ut = d1∆u− (F + k)u+ u2v,

vt = d2v + F (1− v)− u2v,

where k is called the effective production rate constant and 1/F is called the
mean residence time in dimensionless units. The known examples of isothermal
autocatalytic reactions which can be modeled by Gray-Scott equations, includ-
ing the ferrocyanide-iodate-sulphite reaction, the chlorite-iodide-malonic acid
(CIMA) reaction, and quite a few enzyme catalytic reactions (see [1, 2, 10]).
During the past years, there are many papers were denoted to the Gray-Scott
equations, for example [8, 13, 14] and so on.

The dynamic properties of diffusion equation and diffusion system such as
the global asymptotical behaviors of solutions and global attractors are im-
portant for the study of diffusion model, which ensure the stability of diffu-
sion phenomena and provide the mathematical foundation for the study of
diffusion dynamics. There are many studies on the existence of global attrac-
tors for diffusion equations. For the classical results we refer the reader to
[3, 11, 19, 21, 22, 24]. Recently, based on the iteration technique for regularity
estimates, combining with the classical existence theorem of global attractors,
Song et al. [17, 18] considered the global attractor for some parabolic equa-
tions, such as Cahn-Hilliard equation, Swift-Hohenberg equation and so on,
in Hk (0 ≤ k ≤ ∞) space. Zhao and Liu [23] studied the global attractor
for a fourth order parabolic equation modeling epitaxial thin-film growth in
Hk (0 ≤ k < 5) space.

In this paper, we are interested in the existence of global attractors for
the diffusion system (1.1)-(1.4). Based on You’s recent paper [20] and Ma and
Wang’s work [12], we shall prove that the problem (1.1)-(1.6) possesses a global
attractor in Hk(Ω)4 (0 ≤ k < ∞) space.

The outline of this paper is as follows: In the next section, we give some
preparations for our consideration, we also give the main result on the existence
of global attractor for the problem (1.1)-(1.6); In Section 3, the main result is
proved.
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In the following, the letters C, Ci, (i = 0, 1, 2, . . .) will always denote positive
constants different in various occurrences.

2. Preliminary

Assume X and X1 are two Banach spaces, X1 ⊂ X a compact and dense
inclusion. Consider the following equation defined on X ,

{

Ut = LU +QU,
U(0) = U0,

(2.1)

where U is an unknown function, L : X1 → X a linear operator and Q : X1 →
X a nonlinear operator. Then the solution of (2.1) can be expressed as

U(t, U0) = S(t)U0,

where S(t) : X → X (t ≥ 0) is a semiflows generated by (2.1).
We used to assume that the linear operator L : X1 → X in (2.1) is a

sectorial operator, which generates an analytic semiflows etL, and L induces
the fractional power operators L α and fractional order spaces Xα as follows,

L
α = (−L)α : Xα → X, α ∈ R,(2.2)

where Xα = D(L α) is the domain of L α. By the semiflows theory of linear
operators, Xβ ⊂ Xα is a compact inclusion for any β > α. If you want to know
more about the space Hα, I recommend you read [12].

Now, we introduce a lemma on the existence of global attractor which can
be founded in [12, 17, 18, 23].

Lemma 2.1. Assume that U(t, U0) = S(t)U0 (U0 ∈ X, t ≥ 0) is a solution of

(2.1) and S(t) the semiflows generated by (2.1). Assume further that Xα is the

fractional order space generated by L and

(B1) For some α ≥ 0 there is a bounded set B ⊂ Xα, which means for any

U0 ∈ Xα, there exists tU0
> 0 such that

U(t, U0) ∈ B, ∀t > tU0
;

(B2) There is a β > α, for any bounded set E ⊂ Xβ, ∃T > 0 and C > 0
such that

‖U(t, U0)‖Xβ
≤ C, ∀t > T, U0 ∈ E.

Then (2.1) has a global attractor A ⊂ Xα which attracts any bounded set of

Xα in the Xα-norm.

We also have the following lemma which can be founded in [12, 17, 18, 23].

Lemma 2.2. Assume that L : X1 → Xα is a sectorial operator which generates

an analytic semiflows T (t) = etL. If all eigenvalues λ of L satisfy Reλ < −λ0

for some real number λ0 > 0, then for L
α(L = −L) we have

(C1) T (t) : X → Xα is bounded for all α ∈ R1 and t > 0;
(C2) T (t)L αx = L αT (t)x, ∀x ∈ Xα;



146 XIAOPENG ZHAO AND BO LIU

(C3) For each t > 0, L αT (t) : X → X is bounded, and

‖L αT (t)‖ ≤ Cαt
−αe−δt;

where some δ > 0 and Cα > 0 is a constant depending only on α;
(C4) The Xα-norm can be defined by ‖x‖Xα

= ‖L αx‖X .

Now, we introduce the space as follows














H = H = L2(Ω)× L2(Ω)× L2(Ω)× L2(Ω),
H 1

2

= {(u, v, w, z) ∈ H1(Ω)×H1(Ω)×H1(Ω)×H1(Ω);
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= ∂z
∂ν

= 0}
H1 = (H2(Ω)×H2(Ω)×H2(Ω)×H2(Ω))

⋂

H 1

2

.

(2.3)

We also define the operators Li (i = 1, 2) and Qi (i = 1, 2, 3, 4) by






















L1u = d1∆u, L2v = d2∆v, L1w = d1∆w, L2z = d2∆z,
Q1g = q1(u, v, w, z) = −(F + k)u+ u2v +D1(w − u),
Q2g = q2(u, v, w, z) = F (1− v)− u2v +D2(z − v),
Q3g = q3(u, v, w, z) = −(F + k)w + w2z +D1(u− w),
Q4g = q4(u, v, w, z) = F (1− z)− w2z +D2(v − z),

(2.4)

where g = col(u, v, w, , z). It is easy to check that qi(i = 1, 2, 3, 4) are nonlinear
functions, q1(u, v, w, z) = q3(w, z, u, v) and q2(u, v, w, z) = q4(w, z, u, v). Obvi-
ously, the linear operator Li : H

2(Ω) → L2(Ω), (i = 1, 2) given by (2.4) are
sectorial operators.

By using the Lumer-Phillips theorem and the analytic semiflows generation
theorem [16], we obtain the linear operator

(2.5) L =









d1∆ 0 0 0
0 d2∆ 0 0
0 0 d1∆ 0
0 0 0 d2∆









=









L1

L2

L1

L2









: H2(Ω)4 → L2(Ω)4,

which is the generator of an analytic C0-semiflows on the Hilbert space L2(Ω)4.
Define

Qg=









Q1g
Q2g
Q3g
Q4g









=









q1(u, v, w, z)
q2(u, v, w, z)
q3(u, v, w, z)
q4(u, v, w, z)









=









−(F + k)u+ u2v +D1(w − u)
F (1 − v)− u2v +D2(z − v)
−(F + k)w + w2z +D1(u− w)
F (1 − z)− w2z +D2(v − z)









,

then the initial boundary value problem (1.1)-(1.6) is formulated into the fol-
lowing problem:

dg

dt
= Lg +Qg, t > 0,(2.6)

where g = col(u, v, w, z), or written as (u, v, w, z), for any initial data g(0) =
g0 = col(u0, v0, w0, z0), or written as (u0, v0, w0, z0). It is easy to see that in
(2.6) L is a linear operator and Q a nonlinear operator.
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Compared with (2.1), it is easy to see that X = H, X1 = H1, L : H1 → H is
a linear sectorial operator and Q a nonlinear operator in (2.6). We can define
the fractional order spaces L α as (2.2), where Hα = D(L α) = Hα × Hα ×
Hα ×Hα = D((−L1)

α)×D((−L2)
α)×D((−L1)

α)×D((−L2)
α) is the domain

of L α.
The following propositions on the existence and uniqueness of strong solution

and global weak solution for problem (2.6) can be found in [20].

Proposition 2.3. For any given initial data g0 ∈ H, there exists a unique,

local weak solution g(t) = (u(t), v(t), w(t), z(t)), t ∈ [0, τ ] for some τ > 0, of
the problem (2.6), which becomes a strong solution on (0, τ ] and satisfies

g ∈ C([0, Tmax);H)
⋂

C1((0, Tmax);H)
⋂

L2(0, Tmax;H 1

2

).

Proposition 2.4. For any given initial data g0 ∈ H, there exists a unique,

global, weak solution g(t) = (u(t), v(t), w(t), z(t)), t ∈ [0,∞), of the problem

(2.6).

Based on Proposition 2.4, we can define a semiflow {S(t)}t≥0 on L2(Ω)4,
where

S(t) : g0 7−→ g(t, g0), g0 ∈ L2(Ω)4, t ≥ 0,

which will be called coupled Gray-Scott semiflow generated by the two-compart-
ment Gray-Scott evolutionary equations (1.1)-(1.6).

We summarize the results in [20].

Proposition 2.5. For any given positive parameters d1, d2, F, k,D1 and D2,

there exists a constant K1 > 0 such that the set

B0 = {g ∈ L2(Ω)4 : ‖g‖2 ≤ K1}

is a bounded absorbing set in L2(Ω)4 for the coupled Gray-Scott semiflow

{S(t)}t≥0.

Proposition 2.6. For any given positive parameters d1, d2, F, k,D1, D2 and

initial data (u0, v0, w0, z0) ∈ B0, the (u(t), w(t)) components of the solution

trajectory g(t) = S(t)g0 of the initial value problem (2.6) satisfy

‖u(t)‖2H1 + ‖w(t)‖2H1 ≤ M1, ∀t > T1,

where M1 > 0 is a constant depending on |Ω| but independent of the initial

data, and T1 > 0 is finite and only depends on K1 and |Ω|.

Proposition 2.7. For any given positive parameters d1, d2, F, k,D1, D2 and

initial data (u0, v0, w0, z0) ∈ B0, the (v(t), z(t)) components of the solution

trajectory g(t) = S(t)g0 of the initial value problem (2.6) satisfy

‖v(t)‖2H1 + ‖z(t)‖2H1 ≤ M2, ∀t > T2,

where M2 > 0 is a constant depending on |Ω| but independent of the initial

data, and T2 > 0 is finite and only depends on K1 and |Ω|.
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Proposition 2.8. For any given positive parameters d1, d2, F, k,D1, D2 and

the constant R > 0, there exists a constant M(R) > 0 such that if the initial

datum (u0, v0, w0, z0) ∈ H1(Ω)4 and

‖u0‖
2
H1(Ω) + ‖v0‖

2
H1(Ω) + ‖w0‖

2
H1(Ω) + ‖z0‖

2
H1(Ω) ≤ R,

then for all t ≥ 0, we have

‖u‖2H1(Ω) + ‖v‖2H1(Ω) + ‖w‖2H1(Ω) + ‖z‖2H1(Ω) ≤ M(R).

Proposition 2.9. For any given positive parameters d1, d2, F, k,D1 and D2,

there exists a global attractor in the phase space L2(Ω)4 for the solution semi-

flow {S(t)}t≥0 of the problem (2.5).

In the following, we give the main result, which provides the existence of
global attractors of the equations (1.1)-(1.4) in any kth space Hk(Ω)4, where
0 ≤ k < ∞.

Theorem 2.10. For any given positive parameters d1, d2, F, k,D1, D2 and g0 =
(u0, v0, w0, z0) ∈ Hα (∀α ≥ 0), the semiflows S(t) associated with problem

(1.1)-(1.6) possesses a global attractor A in Hα space and A attractors any

bounded set of Hα in the Hα-norm.

3. Proof of Theorem 2.10

We are now in a position to state and prove the main theorem in this paper,
which provides the existence of a global attractor of the equations (1.1)-(1.6)
in spaces Hα of any αth differentiable function.

For any g0 = (u0, v0, w0, z0) ∈ H, the solution (u, v, w, z) of the problem
(1.1)-(1.6) can be written as

u(t, u0) = etL1u0 +

∫ t

0

e(t−τ)L1Q1gdτ

= etL1u0 +

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ,(3.1)

v(t, v0) = etL2v0 +

∫ t

0

e(t−τ)L2Q2gdτ

= etL2v0 +

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ,(3.2)

w(t, w0) = etL1w0 +

∫ t

0

e(t−τ)L1Q3gdτ

= etL1w0 +

∫ t

0

e(t−τ)L1q3(u, v, w, z)dτ,(3.3)

z(t, z0) = etL2z0 +

∫ t

0

e(t−τ)L2Q4gdτ
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= etL2z0 +

∫ t

0

e(t−τ)L2q4(u, v, w, z)dτ,(3.4)

By Lemma 2.1, in order to prove Theorem 2.10, we first prove the following
lemma.

Lemma 3.1. Suppose d1, d2, F, k,D1 and D2 are given positive parameters,

g = (u, v, w, z) is a solution to the problem (1.1)-(1.6), g0 = (u0, v0, w0, z0) ∈
Hα (∀α ≥ 0), then, the semiflows S(t) associated with problem (1.1)-(1.6) is

uniformly compact in Hα.

Proof. It suffices to prove that for any bounded set B ⊂ Hα with initial value
g0 = (u0, v0, w0, z0) ∈ B ⊂ Hα, there exists C > 0 such that

‖g(u, g0)‖Hα
≤ C, ∀t ≥ 0, α ≥ 0.(3.5)

Obviously, if we get

‖u(t, u0)‖
2
Hα

+ ‖v(t, v0)‖
2
Hα

+ ‖w(t, w0)‖
2
Hα

+ ‖z(t, z0)‖
2
Hα

≤ C. ∀t ≥ 0, α ≥ 0,

then, we obtain (3.5) immediately.
For α = 1

2 , this follows from Proposition 2.8, i.e., for any bounded set
B ⊂ H 1

2

with initial value (u0, v0, w0, z0) ∈ B ⊂ H 1

2

, there exists a constant

C > 0 such that ∀t ≥ 0,

(3.6) ‖u(t, u0)‖H 1

2

+ ‖v(t, v0)‖H 1

2

+ ‖w(t, w0)‖H 1

2

+ ‖z(t, z0)‖H 1

2

≤ C.

So, we only need to show (3.5) for any α ≥ 1
2 . There are three steps for us

to prove it.
Step 1. We prove that for any bounded set B ⊂ Hα (12 ≤ α < 1), there

exists a positive constant C such that ∀t ≥ 0, 1
2 ≤ α < 1,

(3.7) ‖u(t, u0)‖
2
Hα

+ ‖v(t, v0)‖
2
Hα

+ ‖w(t, w0)‖
2
Hα

+ ‖z(t, z0)‖
2
Hα

≤ C.

For the dimension n ≤ 3, we have H1(Ω) →֒ L6(Ω). It then follows from
Proposition 2.5 and Proposition 2.8 that

‖q1(u, v, w, z)‖
2
L2 =

∫

Ω

|q1(u, v, w, z)|
2dx

=

∫

Ω

[−(F + k)u+ u2v +D1(w − u)]2dx

≤ C

(∫

Ω

u2dx+

∫

Ω

w2dx +

∫

Ω

u4v2dx

)

≤ C

(∫

Ω

u2dx+

∫

Ω

w2dx +
(

∫

Ω

u6dx
)

4

3 +
(

∫

Ω

v6dx
)

2

3

)

≤ C(‖u‖2 + ‖w‖2 + ‖u‖
8

3

H1 + ‖v‖
4

3

H1) ≤ C(3.8)

and

‖q2(u, v, w, z)‖
2
L2 =

∫

Ω

|q2(u, v, w, z)|
2dx
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=

∫

Ω

[F (1− v)− u2v +D2(z − v)]2dx

≤ C

(

C +

∫

Ω

v2dx+

∫

Ω

u4v2dx+

∫

Ω

z2dx

)

≤ C

(

C +

∫

Ω

v2dx+
(

∫

Ω

u6dx
)

4

3 +
(

∫

Ω

v6dx
)

2

3 +

∫

Ω

z2dx

)

≤ C(‖v‖2 + ‖z‖2 + ‖u‖
8

3

H1 + ‖v‖
4

3

H1) ≤ C.(3.9)

Note that q1(u, v, w, z) = q3(w, z, u, v) and q2(u, v, w, z) = q4(w, z, u, v), simple
calculations show that

‖q3(u, v, w, z)‖
2
L2 ≤ C,(3.10)

‖q4(u, v, w, z)‖
2
L2 ≤ C.(3.11)

By (3.1), (3.6) and (3.8), we obtain

‖u(t, u0)‖Hα
= ‖etL1u0 +

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ‖Hα

≤ ‖etL1u0‖Hα
+ ‖

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ‖Hα

≤ C‖u0‖Hα
+

∫ t

0

‖(−L1)
αe(t−τ)L1‖ · ‖q1(u, v, w, z)‖L2(Ω)dτ

≤ C‖u0‖Hα
+ C

∫ t

0

τ−αe−δτdτ

≤ C, ∀t ≥ 0, g0 ∈ B,(3.12)

where 0 < α < 1. By (3.2), (3.6) and (3.9), we obtain

‖v(t, v0)‖Hα
= ‖etL2v0 +

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ‖Hα

≤ ‖etL2v0‖Hα
+ ‖

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ‖Hα

≤ C‖v0‖Hα
+

∫ t

0

‖(−L2)
αe(t−τ)L2‖ · ‖q2(u, v, w, z)‖L2(Ω)dτ

≤ C‖v0‖Hα
+ C

∫ t

0

τ−αe−δτdτ

≤ C, ∀t ≥ 0, g0 ∈ B,(3.13)

where 0 < α < 1. By (3.3), (3.4), (3.6), (3.10) and (3.11), simple calculations
shows that

‖w(t, w0)‖Hα
≤ C, ∀t ≥ 0, g0 ∈ B,(3.14)

‖z(t, z0)‖Hα
≤ C, ∀t ≥ 0, g0 ∈ B,(3.15)
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where 0 < α < 1. By (3.12), (3.13), (3.14) and (3.15), we obtain (3.7) immedi-
ately.

Step 2. We prove that for any bounded set B ⊂ Hα (1 ≤ α < 3
2 ), there

exists a positive constant C such that ∀t ≥ 0, 1 ≤ α < 3
2 ,

(3.16) ‖u(t, u0)‖
2
Hα

+ ‖v(t, v0)‖
2
Hα

+ ‖w(t, w0)‖
2
Hα

+ ‖z(t, z0)‖
2
Hα

≤ C.

By Proposition 2.5, Proposition 2.8 and the following embedding theorems of
fractional order spaces

Hα →֒ C0(Ω)
⋂

H1(Ω), ∀α >
3

4
,(3.17)

we obtain

‖q1(u, v, w, z)‖
2
H 1

2

(3.18)

≤ C

∫

Ω

|∇q1(u, v, w, z)|
2dx+ C0

≤ C

∫

Ω

|∇(−(F + k)u+ u2v +D1(w − u))|2dx+ C0

≤ C

∫

Ω

(

−(F + k)∇u+ 2uv∇u+ u2∇v +D1∇w −D1∇u
)2

dx+ C0

≤ C

∫

Ω

(

|∇u|2 + u2v2|∇u|2 + u4|∇v|2 + |∇w|2 + |∇u|2
)

dx+ C0

≤ C

∫

Ω

(

|∇u|2 + sup
x∈Ω

u2v2 · |∇u|2 + sup
x∈Ω

u4 · |∇v|2 + |∇w|2 + |∇u|2
)

dx

+ C0

≤ C

∫

Ω

(

|∇u|2 + |∇u|2 + |∇v|2 + |∇w|2 + |∇u|2
)

dx+ C0

≤ C(‖u‖2Hα
+ ‖v‖2Hα

+ ‖w‖2Hα
) + C0 ≤ C

and

‖q2(u, v, w, z)‖
2
H 1

2

(3.19)

≤ C

∫

Ω

|∇q2(u, v, w, z)|
2dx+ C0

≤ C

∫

Ω

[∇(F (1− v)− u2v +D2(z − v))]2dx+ C0

≤ C

∫

Ω

(

−F∇v − 2uv∇u− u2∇v +D2∇z −D2∇v
)2

dx + C0

≤ C

∫

Ω

(

|∇v|2 + u2v2|∇u|2 + u4|∇v|2 + |∇z|2 + |∇v|2
)

dx+ C0

≤ C

∫

Ω

(

|∇v|2 + sup
x∈Ω

u2v2 · |∇u|2 + sup
x∈Ω

u4 · |∇v|2 + |∇z|2 + |∇v|2
)

dx
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+ C0

≤ C

∫

Ω

(

|∇v|2 + |∇u|2 + |∇v|2 + |∇z|2 + |∇v|2
)

dx+ C0

≤ C(‖u‖2Hα
+ ‖v‖2Hα

+ ‖z‖2Hα
) + C0 ≤ C.

Note that q1(u, v, w, z) = q3(w, z, u, v) and q2(u, v, w, z) = q4(w, z, u, v), simple
calculations show that

‖q3(u, v, w, z)‖
2
H 1

2

≤ C,(3.20)

‖q4(u, v, w, z)‖
2
H 1

2

≤ C.(3.21)

By (3.1), (3.7) and (3.18), we obtain

‖u(t, u0)‖Hα
= ‖etL1u0 +

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ‖Hα

≤ ‖etL1u0‖Hα
+ ‖

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ‖Hα

≤ C‖u0‖Hα
+

∫ t

0

‖(−L1)
− 1

2
+αe(t−τ)L1‖ · ‖q1(u, v, w, z)‖H 1

2

dτ

≤ C‖u0‖Hα
+ C

∫ t

0

τ
1

2
−αe−δτdτ

≤ C, ∀t ≥ 0, g0 ∈ B,(3.22)

where 1
2 < α < 3

2 . By (3.2), (3.7) and (3.19), we obtain

‖v(t, v0)‖Hα
= ‖etL2v0 +

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ‖Hα

≤ ‖etL2v0‖Hα
+ ‖

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ‖Hα

≤ C‖v0‖Hα
+

∫ t

0

‖(−L2)
− 1

2
+αe(t−τ)L2‖ · ‖q2(u, v, w, z)‖H 1

2

dτ

≤ C‖v0‖Hα
+ C

∫ t

0

τ
1

2
−αe−δτdτ

≤ C, ∀t ≥ 0, g0 ∈ B,(3.23)

where 1
2 < α < 3

2 . By (3.3), (3.4), (3.7), (3.20) and (3.21), simple calculations
shows that

‖w(t, w0)‖Hα
≤ C, ∀t ≥ 0, g0 ∈ B,(3.24)

‖z(t, z0)‖Hα
≤ C, ∀t ≥ 0, g0 ∈ B,(3.25)

where 1
2 < α < 3

2 . By (3.22), (3.23), (3.24) and (3.25), we obtain (3.16)
immediately.
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Step 3. We prove that for any bounded set B ⊂ Hα (32 ≤ α < 2), there

exists a positive constant C such that ∀t ≥ 0, 3
2 ≤ α < 2,

(3.26) ‖u(t, u0)‖
2
Hα

+ ‖v(t, v0)‖
2
Hα

+ ‖w(t, w0)‖
2
Hα

+ ‖z(t, z0)‖
2
Hα

≤ C.

By Proposition 2.5 and Proposition 2.8 and the following embedding theorems
of fractional order spaces

Hα →֒ H2(Ω), H2(Ω) →֒ C0(Ω)
⋂

W 1,4(Ω), ∀α > 1,

we obtain

‖q1(u, v, w, z)‖
2
H1

≤ C

∫

Ω

|∆q1(u, v, w, z)|
2dx+ C0

≤ C

∫

Ω

|∆(−(F + k)u+ u2v +D1(w − u))|2dx + C0

≤ C

∫

Ω

(

−(F + k)∆u+ 2uv∆u+ 2v|∇u|2 + 4u∇u∇v

+u2∆v +D1∆w −D1∆u
)2

dx+ C0

≤ C

∫

Ω

(

|∆u|2 + u2v2|∆u|2 + v2|∇u|4 + u2|∇u∇v|2

+u4|∆v|2 + |∆w|2 + |∆u|2
)

dx+ C0

≤ C

∫

Ω

(

|∆u|2 + sup
x∈Ω

u2v2 · |∆u|2 + sup
x∈Ω

v2 · |∇u|4

+ sup
x∈Ω

u2 · |∇u∇v|2 + sup
x∈Ω

u4 · |∆v|2 + |∆w|2 + |∆u|2
)

dx+ C0

≤ C

∫

Ω

(|∆u|2 + |∇v|4 + |∇u|4 + |∆v|2 + |∆w|2)dx+ C0

≤ C(‖u‖2Hα
+ ‖v‖4Hα

+ ‖u‖4Hα
+ ‖v‖2Hα

+ ‖w‖2Hα
) + C0 ≤ C(3.27)

and

‖q2(u, v, w, z)‖
2
H1

≤ C

∫

Ω

|∆q2(u, v, w, z)|
2dx+ C0

≤ C

∫

Ω

[∆(F (1 − v)− u2v +D2(z − v))]2dx+ C0

≤ C

∫

Ω

(−F∆v − 2uv∆u− 2v|∇u|2 − 4u∇u∇v

− u2∆v +D2∆z −D2∆v)2dx+ C0

≤ C

∫

Ω

(|∆u|2 + u2v2|∆u|2 + v2|∇u|4 + u2|∇u∇v|2
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+ u4|∆v|2 + |∆z|2 + |∆v|2)dx+ C0

≤ C

∫

Ω

(|∆u|2 + sup
x∈Ω

u2v2 · |∆u|2 + sup
x∈Ω

v2 · |∇u|4

+ sup
x∈Ω

u2 · |∇u∇v|2 + sup
x∈Ω

u4 · |∆v|2 + |∆z|2 + |∆v|2)dx+ C0

≤ C

∫

Ω

(|∆u|2 + |∇u|4 + |∇v|4 + |∆v|2 + |∆z|2)dx+ C0

≤ C(‖∆u‖2 + ‖∆v‖2 + ‖∇u‖4 + ‖∇v‖4 + ‖∆z‖2) + C0

≤ C(‖u‖2Hα
+ ‖v‖2Hα

+ ‖u‖4Hα
+ ‖v‖4Hα

+ ‖z‖2Hα
) + C0 ≤ C.(3.28)

Note that q1(u, v, w, z) = q3(w, z, u, v) and q2(u, v, w, z) = q4(w, z, u, v), simple
calculations show that

‖q3(u, v, w, z)‖
2
H1

≤ C,(3.29)

‖q4(u, v, w, z)‖
2
H1

≤ C.(3.30)

By (3.1), (3.16) and (3.27), we obtain

‖u(t, u0)‖Hα
= ‖etL1u0 +

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ‖Hα

≤ ‖etL1u0‖Hα
+ ‖

∫ t

0

e(t−τ)L1q1(u, v, w, z)dτ‖Hα

≤ C‖u0‖Hα
+

∫ t

0

‖(−L1)
α−1e(t−τ)L1‖ · ‖q1(u, v, w, z)‖H1

dτ

≤ C‖u0‖Hα
+ C

∫ t

0

τ1−αe−δτdτ

≤ C, ∀t ≥ 0, g0 ∈ B,(3.31)

where 1 < α < 2. By (3.2), (3.16) and (3.28), we obtain

‖v(t, v0)‖Hα
= ‖etL2v0 +

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ‖Hα

≤ ‖etL2v0‖Hα
+ ‖

∫ t

0

e(t−τ)L2q2(u, v, w, z)dτ‖Hα

≤ C‖v0‖Hα
+

∫ t

0

‖(−L2)
α−1e(t−τ)L2‖ · ‖q2(u, v, w, z)‖H1

dτ

≤ C‖v0‖Hα
+ C

∫ t

0

τ1−αe−δτdτ

≤ C, ∀t ≥ 0, g0 ∈ B,(3.32)

where 1 < α < 2. By (3.3), (3.4), (3.16), (3.29) and (3.30), simple calculations
shows that

‖w(t, w0)‖Hα
≤ C, ∀t ≥ 0, g0 ∈ B,(3.33)



GLOBAL ATTRACTOR 155

‖z(t, z0)‖Hα
≤ C, ∀t ≥ 0, g0 ∈ B,(3.34)

where 1 < α < 2. By (3.31), (3.32), (3.33) and (3.34) together, we obtain
(3.26) immediately.

In the same fashion as in the proof of (3.26), by iteration we can prove that
for any bounded set B ⊂ Hα, there exists a positive constant C such that

‖u(t, u0)‖
2
Hα

+ ‖v(t, v0)‖
2
Hα

+ ‖w(t, w0)‖
2
Hα

+ ‖z(t, z0)‖
2
Hα

≤ C, ∀t ≥ 0, α ≥ 0.

It then follows from the above inequality that

‖g(t, g0)‖Hα
≤ C, ∀t ≥ 0, α ≥ 0,

that is, for all α ≥ 0, the solution g = (u, v, w, z) of (1.1)-(1.6) is uniformly
bounded in Hα.

Hence, Lemma 3.1 is proved. �

Lemma 3.2. Suppose d1, d2, F, k,D1 and D2 are given positive parameters,

g = (u, v, w, z) is a solution to the problem (1.1)-(1.6), g0 = (u0, v0, w0, z0) ∈
Hα (∀α ≥ 0), then, the problem (1.1)-(1.6) has a bounded absorbing set in Hα.

Proof. It suffices to prove that for any bounded set B ⊂ Hα (α ≥ 0) with
initial value g0 = (u0, v0, w0, z0) ∈ B, there exist T > 0 and a constant C > 0
independent of (u0, v0, w0, z0), such that

‖g(t, g0)‖Hα
≤ C, ∀t ≥ T.(3.35)

Obviously, if we get

‖u(t, u0)‖
2
Hα

+ ‖v(t, v0)‖
2
Hα

+ ‖w(t, w0)‖
2
Hα

+ ‖z(t, z0)‖
2
Hα

≤ C, ∀t ≥ T,

then we obtain (3.35) immediately.
For α = 1

2 , this follows from Propositions 2.5, 2.6 and 2.7. So we shall prove

(3.35) for any α ≥ 1
2 . We prove the lemma in the following steps:

Step 1. we prove that for any 1
2 ≤ α < 1, the problem (1.1)-(1.6) has a

bounded absorbing set in Hα.
It then follows from (3.1)-(3.4) that

(3.36) u(t, u0) = e(t−T )L1u(T, u0) +

∫ t

T

e(t−τ)L1q1(u, v, w, z)dτ,

(3.37) v(t, v0) = e(t−T )L2v(T, v0) +

∫ t

T

e(t−τ)L2q2(u, v, w, z)dτ,

(3.38) w(t, w0) = e(t−T )L1w(T,w0) +

∫ t

T

e(t−τ)L1q3(u, v, w, z)dτ,

(3.39) z(t, z0) = e(t−T )L2z(T, z0) +

∫ t

T

e(t−τ)L2q4(u, v, w, z)dτ.
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Assume B is the bounded absorbing set of the problem (1.1)-(1.6) and satisfy
B ⊂ H, we also assume T0 > 0 the time such that ∀t > T0, (u0, v0, w0, z0) ∈
B ⊂ Hα,

(u(t, u0), v(t, v0), w(t, w0), z(t, z0)) ∈ B, α ≥
1

2
.(3.40)

It is easy to check that

‖etLi‖ ≤ Ce−dλ1t,(3.41)

here, i = 1, 2, λ1 > 0 is the first eigenvalue of the equation
{

−∆Σ = λΣ,
∂Σ
∂ν

|∂Ω = 0,
(3.42)

where Σ = u, v, w, z.
Then, for any given T > 0 and (u0, v0, w0, z0) ∈ B ⊂ Hα (α ≥ 1

2 ), we deduce
that

lim
t→∞

‖e(t−T )L1u(T, u0)‖Hα
= 0, lim

t→∞
‖e(t−T )L2v(T, v0)‖Hα

= 0,

lim
t→∞

‖e(t−T )L1w(T,w0)‖Hα
= 0, lim

t→∞
‖e(t−T )L2z(T, z0)‖Hα

= 0.

Then, by (3.36) and (3.40), we obtain

‖u(t, u0)‖Hα

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+

∫ t

T0

‖(−L1)
αe(t−τ)L1‖‖q1(u, v, w, z)‖Hdτ

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+ C

∫ t

T0

‖(−L1)
αe(t−τ)L1‖dτ

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+ C

∫ T−T0

0

τ−αe−δτdτ

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+ C1,(3.43)

where C1 is a positive constant. By (3.37) and (3.40), we have

‖v(t, v0)‖Hα

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+

∫ t

T0

‖(−L2)
αe(t−τ)L2‖‖q2(u, v, w, z)‖Hdτ

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+ C

∫ t

T0

‖(−L2)
αe(t−τ)L2‖dτ

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+ C

∫ T−T0

0

τ−αe−δτdτ

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+ C2,(3.44)

where C2 is a positive constant. Using the same method, we can also obtain

‖w(t, w0)‖Hα
≤ ‖e(t−T0)L1w(T0, w0)‖Hα

+ C3,(3.45)
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‖r(t, r0)‖Hα
≤ ‖e(t−T0)L2r(T0, r0)‖Hα

+ C4,(3.46)

where C3, C4 are positive constants.
Then, by (3.43)-(3.46), we obtain (3.35) holds for all 1

2 ≤ α < 1.

Step 2. We prove that for any 1 ≤ α < 3
2 , the problem (1.1)-(1.6) has a

bounded absorbing set in Hα.
By (3.36) and (3.18), we obtain

‖u(t, u0)‖Hα

(3.47)

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+

∫ t

T0

‖(−L1)
α− 1

2 e(t−τ)L1‖‖q1(u, v, w, z)‖H 1

2

dτ

≤ ‖e(t−T0)L1u(t, u0)‖Hα
+ C

∫ t

T0

‖(−L1)
α− 1

2 e(t−τ)L1‖dτ

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+ C

∫ t

T0

τ−(α− 1

2
)e−δτdτ

≤ ‖e(t−T0)L1u(T0, u0)‖Hα
+ C5,

where C5 is a positive constant. By (3.37) and (3.19), we have

‖v(t, v0)‖Hα
(3.48)

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+

∫ t

T0

‖(−L2)
α− 1

2 e(t−τ)L2‖‖q2(u, v, w, z)‖H 1

2

dτ

≤ ‖e(t−T0)L2v(t, v0)‖Hα
+ C

∫ t

T0

‖(−L2)
α− 1

2 e(t−τ)L2‖dτ

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+ C

∫ t

T0

τ−(α− 1

2
)e−δτdτ

≤ ‖e(t−T0)L2v(T0, v0)‖Hα
+ C6,

where C6 is a positive constant. Using the same method, we can also obtain

‖w(t, w0)‖Hα
≤ ‖e(t−T0)L1w(T0, w0)‖Hα

+ C7,(3.49)

‖z(t, z0)‖Hα
≤ ‖e(t−T0)L2z(T0, z0)‖Hα

+ C8,(3.50)

where C7, C8 are positive constants.
Then, by (3.47)-(3.50), we obtain (3.35) holds for all 1 ≤ α < 3

2 .

By iteration, we can prove that for any α ≥ 3
2 , (3.35) holds. Therefore, the

problem (1.1) has a bounded absorbing set in Hα.
Then, Lemma 3.2 is proved. �

Now, we give the proof the main result.

Proof of Theorem 2.10. By Lemma 2.1, Lemma 3.1, Lemma 3.2, we immedi-
ately conclude that the proof of Theorem 2.10 is completed. �
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