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ON 2 × 2 STRONGLY CLEAN MATRICES

Huanyin Chen

Abstract. An element in a ring R is strongly clean provided that it
is the sum of an idempotent and a unit that commutate. In this note,
several necessary and sufficient conditions under which a 2×2 matrix over
an integral domain is strongly clean are given. These show that strong
cleanness over integral domains can be characterized by quadratic and
Diophantine equations.

1. Introduction

An element in a ring R is strongly clean provided that it is the sum of
an idempotent and a unit that commutate, which was firstly introduced by
Nicholson in 1999 ([7]). It seems to be rather hard to determine 2× 2 matrices
over a commutative ring strongly clean. A ring R is local provided that it
has only a maximal right ideal. Many authors extensively studied the strongly
clean 2 × 2 matrices over a commutative local ring (cf. [2], [3], [4] and [6]).
A commutative ring R is called an integral domain provided that R does not
have any nonzero zero divisor. An element in a ring is said to be clean in
the case that it is the sum of an idempotent and a unit. In [5], Khurana and
Lam explored the cleanness of the matrix of the form ( a b

0 0 ), where a, b ∈ Z.
Further, the author extended Khurana and Lam’s result to Dedekind domains
(cf. [2, Corollary 16.3.7]). The strong cleanness over integral domains is less
considered in the literature, while Rajeswari and Aziz obtained several criteria
on the strong cleanness of 2× 2 matrices over the ring Z of all integers (cf. [9]
and [10]).

The main purpose of this note is to determine the strong cleanness of the
matrices

(

a b
c d

)

where a − d ∈ U(R) over a general integral domain R. We
give the necessary and sufficient conditions under which such 2 × 2 matrices
are strongly clean. For several kind of 2 × 2 matrices over Z, we can derive
more explicit characterizations than that of Rajeswari and Aziz’s. We refer the
reader to [8] for more results on strong cleanness.
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Throughout this paper, all rings are associative rings with an identity, U(R)
stands for the group of all invertible elements in a ring R, and GL2(R) denotes
the 2-dimensional general linear group of R.

2. Quadratic equations

Lemma 2.1. Let R be an integral domain, and let A =
(

a b
c d

)

∈ M2(R). Then

A is strongly clean in M2(R) if and only if A is invertible, or I2−A is invertible,

or there exists a u ∈ U(R) such that the system (∗) of equations

(∗)

(a− d)x + cy + bz = a− det(A) + u;

yz = x− x2;

(a− d)y = b(2x− 1);

(a− d)z = c(2x− 1)

is solvable.

Proof. Suppose that A is strongly clean and A, I2 − A 6∈ GL2(R). In view of
[1, Lemma 1.5], there exists E =

( x y
z 1−x

)

∈ M2(R) such that A−E ∈ GL2(R)

and AE = EA, where yz = x− x2. It follows from AE = EA that (a− d)y =
b(2x− 1) and (a− d)z = c(2x− 1). One easily checks that

u := det(A− E) = (a− x)(d − 1 + x)− (b − y)(c− z)

= det(A)− a+ (a− d)x + bz + cy ∈ U(R).

Therefore (a− d)x+ cy + bz = a− det(A) + u, as desired.
Conversely, if either A ∈ GL2(R) or I2 − A ∈ GL2(R), then A is strongly

clean; otherwise, there exists a u ∈ U(R) such that the preceding system (∗)
of equations is solvable. Set E =

( x y
z 1−x

)

. Then E = E2 and AE = EA.
Further, det(A−E) = det(A)− a+ (a− d)x+ bz + cy = u ∈ U(R). Therefore
A− E ∈ GL2(R), as required. �

Let A = (aij) ∈ M2(R), sA = a11 − a22 and tA = tr2(A)− 4 det(A).

Lemma 2.2. Let R be an integral domain, and let A =
(

a b
c d

)

∈ M2(R). If

sA 6= 0 and tA = v2 for a v ∈ U(R), then A is strongly clean in M2(R) if and

only if A is invertible, or I2−A is invertible, or the equation x2−x+ t−1
A bc = 0

has a root t−1
A

(

sA(a− det(A) + u) + 2bc
)

for some u ∈ U(R).

Proof. Suppose that A is strongly clean in M2(R). If A, I2 − A 6∈ GL2(R), it
follows from Lemma 2.1 that there exists a u ∈ U(R) such that the system
(∗) of equations is solvable. Hence, s2Ayz = bc(2x − 1)2, and so s2A(x − x2) =
4bc(x2−x)+bc. Thus, (s2A+4bc)(x−x2) = bc, and so tA(x−x2) = bc. Further,

s2Ax+ c(sAy) + b(sAz) = sA(a− det(A) + u).

As a result, s2Ax+ cb(2x− 1) + bc(2x− 1) = sA(a− det(A) + u), and so (s2A +
4bc)x = 2bc+sA(a−det(A)+u). Consequently, tAx = sA(a−det(A)+u)+2bc.
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Thus, the equation x2−x+t−1
A bc = 0 has a root x = t−1

A

(

sA(a−det(A)+u)+2bc
)

for some u ∈ U(R).
Conversely, assume that there exists some u ∈ U(R) such that the system

of equations

tA(x
2 − x) + bc = 0, tAx = sA(a− det(A) + u) + 2bc

is solvable. As tA = s2A+4bc, we get 1−4t−1
A bc = s2At

−1
A ; hence, 1−4(x−x2) =

s2Av
−2. This implies that (1− 2x)2 = (sAv

−1)2. Since R is an integral domain,
we get either 1− 2x = sAv

−1 or 1− 2x = −sAv
−1.

Suppose that 1 − 2x = sAv
−1. Then −sAbv

−1 = b(2x − 1). This implies
that (a − d)(−bv−1) = b(2x − 1). Likewise, (a − d)(−cv−1) = c(2x − 1). Set
y = −bv−1 and z = −cv−1. Then (a−d)y = b(2x−1) and (a−d)z = c(2x−1).
Therefore we verify that

AE =

(

ax+ bz ay + b(1− x)
cx+ dz cy + d(1 − x)

)

=

(

ax+ cy bx+ dy

az + c(1− x) bz + d(1 − x)

)

= EA.

In addition, yz = bcv−2 = t−1
A bc = x − x2. Let E =

( x y
z 1−x

)

. Then E = E2 ∈
M2(R). One easily checks that

sA det(A− E) = sA
(

(a− d)x+ cy + bz − a+ det(A)
)

= sA
(

(a− d)x− 2bcv−1 − a+ det(A)
)

= s2Ax+ 2bc(2x− 1)− sA(a− det(A))

= (s2A + 4bc)x− 2bc− sA(a− det(A))

= tAx− 2bc− sA(a− det(A))

= sAu.

As sA 6= 0, we get det(A − E) ∈ U(R); hence, A − E ∈ GL2(R). Therefore
A ∈ M2(R) is strongly clean.

Suppose that 1−2x = −sAv
−1. Then sAbv

−1 = b(2x−1). This implies that
(a − d)(bv−1) = b(2x − 1). Likewise, (a − d)(cv−1) = c(2x − 1). Set y = bv−1

and z = cv−1. Then (a − d)y = b(2x − 1) and (a − d)z = c(2x − 1); hence,
AE = EA. In addition, yz = bcv−2 = t−1

A bc = x− x2. Let E =
( x y
z 1−x

)

. Then

E = E2 ∈ M2(R). As in the preceding discussion, sA det(A − E) = sAu. As
sA 6= 0, det(A − E) ∈ U(R), and so A − E ∈ GL2(R). Therefore A ∈ M2(R)
is strongly clean, as required. �

Lemma 2.3. Let R be an integral domain, let A, I2 − A 6∈ GL2(R), and let

sA ∈ U(R). If A is strongly clean in M2(R), then tA = v2 for some v ∈ U(R).

Proof. Since A and I2 − A are nonunits, in view of Lemma 2.1, there exist
x, y, z ∈ R such that A = E + (A − E), where E = E2 =

( x y
z 1−x

)

, yz =

x− x2, EA = AE,A− E ∈ GL2(R). As EA = AE, we get sAy = a12(2x− 1)
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and sAz = a21(2x − 1). Hence, s2A(x − x2) = s2Abc = a12a21(2x − 1)2. That
is, (s2A + 4a12a21)(x − x2) = a12a21. Obviously, tA = s2A + 4a12a21. Therefore
s2A = tA− 4a12a21 = tA− 4tA(x−x2) = tA(1− 2x)2. As sA ∈ U(R), we deduce

that 1− 2x ∈ U(R). Therefore tA =
(

sA(1 − 2x)−1
)2
, as asserted. �

Let Z(2) = {m
n
|m,n ∈ Z, n is odd}. Then Z(2) is an integral domain. Choose

A =
(

p+1 p
q p

)

, p, q ∈ Z, p 6= ±1. If 1 + 4pq is not a square of a prime, then
A ∈ M2(Z(2)) is not strongly clean. Clearly, Z(2) is an integral domain with
sA = 1 ∈ U(Z(2)). As tA = 1 + 4pq is not a square of an invertible element, it
follows from Lemma 2.3 that A ∈ M2(Z(2)) is not strongly clean. For instance,
( 8 7
3 7 ) ∈ M2(Z(2)) is not strongly clean. This is the case for p = 7, q = 3.

Theorem 2.4. Let R be an integral domain, and let A =
(

a b
c d

)

. If sA ∈ U(R),
then A is strongly clean in M2(R) if and only if A is invertible, or I2 − A is

invertible, or the equation x2 − x + t−1
A bc = 0 has a root t−1

A

(

sA(a − det(A) +

u) + 2bc
)

for some u ∈ U(R).

Proof. Suppose that A is strongly clean in M2(R). Since sA ∈ U(R), it follows
from Lemma 2.3 that tA = v2 for some v ∈ U(R). According to Lemma 2.2,
we are done.

Conversely, assume that there exists a u ∈ U(R) such that the system of
equations tA(x

2 − x) + bc = 0, tAx = sA(a − det(A) + u) + 2bc is solvable.
Set y = s−1

A b(2x − 1) and z = s−1
A c(2x − 1). Then s2Ayz = bc(2x − 1)2 =

4bc(x2 − x) + bc = s2A(x − x2) − tA(x − x2) + bc = s2A(x − x2). We infer that
yz = x − x2. Let E =

( x y
z 1−x

)

. Then E = E2 ∈ M2(R). One easily checks
that

det(A− E) = (a− d)x+ cy + bz − a+ det(A)

= (a− d)x+ cs−1
A b(2x− 1) + bs−1

A c(2x− 1)− a+ det(A)

= s−1
A

(

s2Ax+ 2bc(2x− 1)− sA(a− det(A))
)

= s−1
A

(

(s2A + 4bc)x− 2bc− sA(a− det(A))
)

= s−1
A

(

tAx− 2bc− sA(a− det(A))
)

= s−1
A

(

sA(a− det(A) + u)− sA(a− det(A))
)

= u

∈ U(R).

Thus, A− E ∈ GL2(R). Moreover,

AE =

(

ax+ bz ay + b(1− x)
cx+ dz cy + d(1 − x)

)

=

(

ax+ cy bx+ dy

az + c(1− x) bz + d(1 − x)

)

= EA.

Therefore A ∈ M2(R) is strongly clean, as asserted. �
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Let A =
(

1 1
−

2

9
0

)

∈ M2

(

Z(2)

)

. Then sA = 1 ∈ U
(

Z(2)

)

and tA = 1
9 . Clearly,

x2 − x + t−1
A bc = x2 − x − 2, and so x2 − x + t−1

A bc = 0 has a root 2 ∈ Z(2).

Choose u = − 1
2 ∈ U

(

Z(2)

)

. Then 2 = t−1
A

(

sA(a− det(A) + u) + 2bc
)

. In light

of Theorem 2.4, we conclude that
(

1 1
−

2

9
0

)

∈ M2

(

Z(2)

)

is strongly clean.

We use J(R) to stand for the Jacobson radical of the ring R.

Corollary 2.5. Let R be an integral domain, and let p, q ∈ R. If p ∈ J(R),
then the following are equivalent:

(1)
( p p
q p+1

)

is strongly clean.

(2) The equation x2 − x+ pq
1+4pq = 0 has a root in U(R).

Proof. Let A =
( p p
q p+1

)

. Then sA = −1 and tA = 1 + 4pq. If A is clean,

by virtue of Theorem 2.4, the equation x2 − x + pq
1+4pq = 0 has a root x =

t−1
A

(

sA(a − det(A) + u) + 2bc
)

. One easily checks that x = t−1
A

(

− p + p(p +

1)− pq − u+ 2pq
)

∈ U(R), as desired.

Conversely, assume that the equation x2 − x + pq
1+4pq = 0 has a root x in

U(R). Choose u = p2 − x
1+4pq ∈ U(R). Then the equation x2 − x+ pq

1+4pq = 0

has a root x, which can be written in the form x = t−1
A

(

sA(a−det(A)+u)+2bc
)

.
According to Theorem 2.4, A is strongly clean. �

Corollary 2.6. Let R be an integral domain, and let p, q ∈ J(R). Then the

following are equivalent:

(1)
( 0 p
1 1+q

)

is strongly clean.

(2) The equation x2 − x+ p
(1+p)2+4q = 0 has a root in U(R).

Proof. Let A =
( 0 p
1 1+q

)

. Then sA = −1 − q ∈ U(R) and tA = (1 + q)2 +

4p ∈ U(R). If A ∈ M2(R) is clean, by virtue of Theorem 2.4, the equation
x2 − x + p

(1+p)2+4q = 0 has a root x = t−1
A

(

sA(p + u) + 2p
)

for a u ∈ U(R).

Therefore x ∈ U(R), as required.
Conversely, assume that the equation x2 − x + p

(1+p)2+4q = 0 has a root x

in U(R). Set u = s−1
A (tAx− 2p)− p. Then x = t−1

A

(

sA(a− det(A) + u) + 2bc
)

for some u ∈ U(R). In light of Theorem 2.4, A ∈ M2(R) is strongly clean. �

Let R be a local ring, and let A ∈ M2(R). As is well known, A is strongly

clean if and only if A ∈ GL2(R), I2−A ∈ GL2(R) or A is similar to
(

0 − det(A)
1 tr(A)

)

for some p, q ∈ J(R) (cf. [2, Lemma 16.4.11]). Thus, we deduce the following:
LetR be a local integral domain. Then everyA ∈ M2(R) is strongly clean if and
only if A ∈ GL2(R), or I2−A ∈ GL2(R), or the equation x2−x+ p

(1+p)2+4q = 0

has a root in U(R), where p = − det(A) and q = tr(A) − 1.
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3. Diophantine forms

Let A ∈ M2(R). We say that A is strongly e-clean in case there exists an
idempotent E ∈ M2(R) such that A−E ∈ GL2(R), AE = EA and detE = e.
The aim of this section is to characterize strongly clean 2× 2 matrices over an
integral domain by means of a kind of Diophantine equations.

Proposition 3.1. Let R be an integral domain, and let A ∈ M2(R). Then A

is strongly 1-clean in M2(R) if and only if det(A)− tr(A) + 1 ∈ U(R).

Proof. It is easy to verify that

A is strongly 1-clean ⇔ there exists a U ∈ GL2(R) such that A = I2 + U

⇔

∣

∣

∣

∣

a− 1 −b

−c d− 1

∣

∣

∣

∣

∈ U(R)

⇔ det(A)− tr(A) + 1 ∈ U(R),

as desired. �

Lemma 3.2. Let R be an integral domain. Then E = ( x y
z w ) ∈ M2(R) is an

idempotent if and only if it is one of the following forms:
(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

0 0
0 1

)

,

(

1 0
0 1

)

;
(

x y

z 1− x

)

, yz = x− x2, either y 6= 0 or z 6= 0.

Proof. Suppose E = ( x y
z w ) ∈ M2(R) is an idempotent. Then

x2 + yz = x;

xy + yw = y;

zx+ wz = z;

zy + w2 = w.

If either y 6= 0 or z 6= 0, then x + w = 1, and so w = 1 − x. In addition,
yz = x− x2.

If y = z = 0, then x = x2 and w = w2. This implies that x = 0, 1;w = 0, 1.
Thus, E must be one of the preceding forms, as required.

Conversely, one directly checks that each one of the preceding forms is an
idempotent, and therefore we complete the proof. �

Let A =
(

a b
c d

)

∈ M2(R), and let x, y ∈ R. We say that (x, y) is A-reducible

in the case that y 6= 0, sAy = b(2x− 1) and tA(x
2 − x) + bc = 0.

Theorem 3.3. Let R be an integral domain, and let A =
(

a b
c d

)

∈ M2(R). If

sA ∈ U(R), then A is strongly 0-clean in M2(R) if and only if

(1) A is invertible, or

(2) a ∈ 1 + U(R), b = c = 0, d ∈ U(R), or
(3) a ∈ U(R), b = c = 0, d ∈ 1 + U(R), or
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(4) there exists a u ∈ U(R) such that (−b)x2+sAxy+cy2+bx+
(

det(A)−

a+ u
)

y = 0 has an A-reducible root, or

(5) there exists a u ∈ U(R) such that (−c)x2+sAxy+by2+cx+
(

det(A)−

a+ u
)

y = 0 has an AT -reducible root.

Proof. Suppose that A =
(

a b
c d

)

is 0-clean. Then there exists an idempotent
E ∈ M2(R) such that A − E ∈ GL2(R) and AE = EA, where detE = 0.
Clearly, E is one of the matrix forms described in Lemma 3.2.

If E = ( 0 0
0 0 ), then A ∈ GL2(R).

If E = ( 1 0
0 0 ), then a ∈ 1 + U(R), b = c = 0, d ∈ U(R).

If E = ( 0 0
0 1 ), then a ∈ U(R), b = c = 0, d ∈ 1 + U(R).

If E =
( x y
z 1−x

)

, yz = x − x2, either y 6= 0 or z 6= 0, then
(

a−x b−y
c−z d−1+x

)

∈

GL2(R). Hence,
∣

∣

∣

a−x b−y
c−z d−1+x

∣

∣

∣
∈ U(R). This implies that u := −

(

(ad − bc) +

(a− d)x+ bz + cy − a
)

∈ U(R). If y 6= 0, then

(a− d)xy + b(x− x2) + cy2 +
(

det(A) − a+ u
)

y = 0.

That is, (−b)x2 + (a − d)xy + cy2 + bx +
(

det(A) − a + u
)

= 0 has a root
(x, y). As AE = EA, we get sAy = b(2x − 1) and sAz = c(2x − 1). Hence,
sAyz = bc(2x− 1)2, and so tA(x

2 − x) + bc = 0. Thus, (x, y) is an A-reducible
root. If z 6= 0, then (ad− bc)z + (a− d)xz + bz2 + cyz − az = uz. Hence,

(−c)x2 + (a− d)xz + bz2 + cx+
(

det(A) − a+ u
)

z = 0

has a root (x, z). Obviously, sA = sAT and tA = tAT . Thus, sAT z = c(2x− 1)
and tAT (x2−x)+cb = 0. Therefore, (x, z) is an AT -reducible root, as required.

Now we prove the converse. If A ∈ GL2(R), then A is strongly clean. If a ∈
1 + U(R), b = c = 0, d ∈ U(R), then A = ( 1 0

0 0 ) +
(

a−1 b
c d

)

∈ M2(R) is strongly

clean. If a ∈ U(R), b = c = 0, d ∈ 1+U(R), then A = ( 0 0
0 1 )+

(

a b
c d−1

)

∈ M2(R)
is strongly clean.

Suppose that there exists a u ∈ U(R) such that (−b)x2 + (a− d)xy + cy2 +
bx+

(

det(A)+u−a
)

y = 0 has an A-reducible root (x, y). Then sAy = b(2x−1)

and tA(x
2−x)+ bc = 0. Choose z = s−1c(2x− 1). Then s2Ayz = bc(2x− 1)2 =

s2A(x−x2)− tA(x−x2)+ bc = s2A(x−x2). This infers that yz = x−x2. Choose
E =

( x y
z 1−x

)

. Then E = E2. Obviously, sAy = b(2x− 1) and sAz = c(2x− 1).
Hence,

AE =

(

ax+ bz ay + b(1− x)
cx+ dz cy + d(1 − x)

)

=

(

ax+ cy bx+ dy

az + c(1− x) bz + d(1 − x)

)

= EA.

It is easy to verify that

det(A− E) =

∣

∣

∣

∣

a− x b− y

c− z d− 1 + x

∣

∣

∣

∣
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= ad− a+ ax− dx + x− x2 − bc+ bz + yc− yz

= (a− d)x + bz + yc+ det(A)− a.

This implies that

y det(A− E) =
(

(a− d)x+ bz + yc+ det(A)− a
)

y

= (−b)x2 + (a− d)xy + cy2 + bx+
(

det(A)− a
)

y = −uy.

As y 6= 0, we get det(A − E) = −u ∈ U(R). Therefore A − E ∈ GL2(R), as
required.

Suppose that there exists a u ∈ U(R) such that (−c)x2+(a−d)xy+by2+cx+
(

det(A)− a+u
)

y = 0 has an AT -reducible root (x, y). Then sAT y = c(2x− 1)

and tAT (x2−x)+cb = 0. Thus, sAy = c(2x−1) and tA(x
2−x)+bc = 0. Choose

z = s−1
A b(2x − 1). Choose E = ( x z

y 1−x ). As in the proceeding discussion, we
see that E = E2 and EA = AE. Further,

det(A− E) =

∣

∣

∣

∣

a− x b− z

c− y d− 1 + x

∣

∣

∣

∣

= ad− a+ ax− dx + x− x2 − bc+ by + zc− yz

= (a− d)x + by + zc+ det(A) − a.

This implies that y det(A−E) =
(

(a−d)x+by+zc+det(A)−a
)

y = (−c)x2+(a−

d)xy+ b2+ cx+
(

det(A)−a
)

y = −uy. As y 6= 0, we get det(A−E) = −u ∈ U ,
and so A− E ∈ GL2(R).

In any case, A ∈ M2(R) is strongly clean, as asserted. �

Corollary 3.4. Let A =
(

a b
c d

)

∈ M2(Z). If |a − d| = 1, then A is strongly

0-clean in M2(Z) if and only if

(1) ad− bc = ±1, or
(2) a = 0, 2; b = c = 0; d = ±1, or
(3) a = ±1; b = c = 0; d = 0, 2, or
(4) A = ( 1 0

∗∗ 0 ) , (
1 0
∗∗ 2 ) ,

(

−1 0
∗∗ 0

)

, ( 0 0
∗∗ 1 ) , (

2 0
∗∗ 1 ) ,

(

0 0
∗∗ −1

)

.

(5) A = ( 1 ∗

0 0 ) , (
1 ∗

0 2 ) ,
(

−1 ∗

0 0

)

, ( 0 ∗

0 1 ) , (
2 ∗

0 1 ) ,
(

0 ∗

0 −1

)

.

Proof. Let A =
(

a b
c d

)

be 0-clean. Suppose that (1), (2) and (3) do not hold.
As sA = ±1, tA = 1 from Lemma 2.3. That is, 1 + 4bc = 1; hence, either b = 0
or c = 0.

I. If b = 0, then sAy = b(2x− 1) implies that y = 0. Thus, by Theorem 3.3,
there exists a u ∈ U(Z) such that (−c)x2 + (a− d)xy + by2 + cx+

(

det(A) −

a + u
)

y = 0 has an AT -reducible root. Hence, y 6= 0, sAT y = c(2x − 1) and

tAT (x2−x)+cb = 0. Obviously, sAT = sA and tAT = tA. Thus, sAy = c(2x−1)
and x2 − x = 0. This implies that either x = 0 or x = 1.

(1) If x = 0, then y = ±c and ad− a± 1 = 0. As sA = ±1, we deduce that

A =

(

1 0
c 0

)

,

(

1 0
c 2

)

,

(

−1 0
c 0

)

.
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(2) If x = 1, then y = ±c and ad− d± 1 = 0. As sA = ±1, we deduce that

A =

(

0 0
c 1

)

,

(

2 0
c 1

)

,

(

0 0
c −1

)

.

II. If c = 0, then sAT y = c(2x−1) implies that y = 0. Thus, by Theorem 3.3,
there exists a u ∈ U(Z) such that (−b)x2 + (a− d)xy + cy2 + bx+

(

det(A) −

a + u
)

y = 0 has an A-reducible root. Hence, y 6= 0, sAy = b(2x − 1) and

tA(x
2 − x) + bc = 0. As sA = ±1 and tA = 1, we get y = ±b(2x − 1) and

x2 − x = 0. This implies that either x = 0 or x = 1.
(1) If x = 0, then y = ±b and ad− a± 1 = 0. As sA = ±1, we deduce that

A =

(

1 b

0 0

)

,

(

1 b

0 2

)

,

(

−1 b

0 0

)

.

(2) If x = 1, then y = ±b and ad− d± 1 = 0. As sA = ±1, we deduce that

A =

(

0 b

0 1

)

,

(

2 b

0 1

)

,

(

0 b

0 −1

)

,

as required.
The converse is obvious from the direct verifications. �

For instance, it follows from Proposition 3.1 and Corollary 3.4 that ( 8 7
3 7 ) ∈

M2(Z) is not strongly clean.

Example 3.5. Let A =
(

−2 3
−4 5

)

∈ M2(Z). Then A is strongly clean in M2(Z).

This can be seen from the strongly clean expression A =
(

−3 3
−4 4

)

+ ( 1 0
0 1 ). But

A is not one of the forms given in Corollary 3.4. In this case, sA = −7 6∈ U(Z).

Acknowledgements. The author is grateful to the referee for his/her sug-
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