A CHARACTERIZATION OF THE GROUP \mathbb{A}_{22} BY NON-COMMUTING GRAPH

Mohammad Reza Darafshef and Pedram Yosefzadeh

Abstract

Let G be a finite non-abelian group. We define the noncommuting graph $\nabla(G)$ of G as follows: the vertex set of $\nabla(G)$ is $G-Z(G)$ and two vertices x and y are adjacent if and only if $x y \neq y x$. In this paper we prove that if G is a finite group with $\nabla(G) \cong \nabla\left(\mathbb{A}_{22}\right)$, then $G \cong \mathbb{A}_{22}$, where \mathbb{A}_{22} is the alternating group of degree 22 .

1. Introduction

The study of relation between groups and graphs is one of the main research topics in group theory. For instance the prime graph $\Gamma(G)$ associated with a finite group G introduced by Gruenberg and Kegel is defined as follows: The vertex set of $\Gamma(G)$ is $\pi(G)$, the set of prime divisors of the order of G. Two distinct primes p and q, considered as vertices of $\Gamma(G)$, are adjacent by an edge if and only if G contains an element of order $p q$. The graph we will consider in this paper is denoted by $\nabla(G)$ and is called the non-commuting graph of G that has attracted the attention of many authors.

The vertex set of $\nabla(G)$ is $G-Z(G)$, where $Z(G)$ is the center of G and two distinct vertices x and y are adjacent whenever $x y \neq y x$. For a graph X, we denote the set of vertices and edges of X by $V(X)$ and $E(X)$ respectively. Two graphs X and Y are isomorphic and we denote it by $X \cong Y$, if there exists a bijective map $\phi: V(X) \longrightarrow V(Y)$ such that if x and y are adjacent in X, then $\phi(x)$ and $\phi(y)$ are adjacent in Y and vice versa. In [2] relation between some graph theoretical properties of $\nabla(G)$ and the group theoretic properties of the group G are studied. In particular the following two conjectures are raised.

Conjecture 1. Let G and H be two arbitrary finite groups such that $\nabla(G) \cong$ $\nabla(H)$. Then $|G|=|H|$.

Conjecture 2. Let S be a finite non-abelian simple group. If G is a group such that $\nabla(G) \cong \nabla(S)$, then $G \cong S$.

Received May 22, 2011; Revised September 7, 2011.
2010 Mathematics Subject Classification. 20D05, 20D06, $20 D 60$.
Key words and phrases. finite group, non-commuting graph, prime graph, alternating group.

In [3] M. R. Darafsheh proved Conjecture 1 for any simple group. Also Conjecture 2 is known to hold for all simple groups with non connected prime graphs. In [6] L. Wang and W. Shi verified Conjecture 2 for the alternating group \mathbb{A}_{10} that has connected prime graph. Also in [1], [4], [5], [7], [9] and [8] Conjecture 2 has been verified for the groups $S L(2, q), \mathbb{A}_{16}, L_{2}(q), L_{4}(8)$, $U_{4}(7), L_{4}(9)$ and $S_{4}(q)$ respectively. But it is still unknown for many simple groups with connected prime graphs. In this paper we will prove Conjecture 2 for the alternating group \mathbb{A}_{22} that has connected prime graph. We believe our method in this paper will help the interested researcher to characterize simple alternating groups such as \mathbb{A}_{p+3} where p is an odd prime.

2. Preliminaries

In this section we list some basic and known results which will be used later. For the proof see [2], [3].

Lemma 2.1. Let G be a finite group such that $\nabla(G) \cong \nabla\left(\mathbb{A}_{22}\right)$. Then

$$
|G|=\left|\mathbb{A}_{22}\right| .
$$

Lemma 2.2. Let G and H be finite groups. If $\nabla(G) \cong \nabla(H)$, then

$$
\left|C_{G}(x)-Z(G)\right|=\left|C_{H}(\phi(x))-Z(H)\right|
$$

for all $1 \neq x \in G-Z(G)$, where ϕ is an isomorphism from $\nabla(G)$ to $\nabla(H)$.
By Lemmas 2.1 and 2.2 we have the following lemma.
Lemma 2.3. Let G be a finite group such that $\nabla(G) \cong \nabla\left(\mathbb{A}_{22}\right)$. Then

$$
\left|C_{G}(x)\right|=\left|C_{\mathbb{A}_{22}}(\phi(x))\right|
$$

for all $1 \neq x \in G-Z(G)$, where ϕ is an isomorphism from $\nabla(G)$ to $\nabla\left(\mathbb{A}_{22}\right)$.

3. Characterization of \mathbb{A}_{22}

Theorem. Let \mathbb{A}_{22} be the alternating group of degree 22. If G is a finite group with $\nabla(G) \cong \nabla\left(\mathbb{A}_{22}\right)$, then $G \cong \mathbb{A}_{22}$.

Proof. We divide the proof into the following seven lemmas. We use the following table in our proof. Note that by Lemma 2.1 we have $|G|=\left|\mathbb{A}_{22}\right|$, hence

$$
\pi(G)=\{2,3,5,7,11,13,17,19\}
$$

TABLE 1. Finite non-abelian simple groups S such that $\pi(S) \subseteq\{2,3,5,7,11,13,17,19\}$ except alternating ones.

S	$\|S\|$	\mid Out $(S) \mid$
$U_{4}(2)$	$2^{6} \cdot 3^{4} \cdot 5$	2
$S_{6}(2)$	$2^{9} \cdot 3^{4} \cdot 5 \cdot 7$	1
$O_{8}^{+}(2)$	$2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7$	6
$L_{3}\left(2^{2}\right)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7$	12
$L_{2}\left(2^{3}\right)$	$2^{3} \cdot 3^{2} \cdot 7$	3
$U_{3}(3)$	$2^{5} \cdot 3^{3} \cdot 7$	2
$U_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7$	8
$U_{3}(5)$	$2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7$	6
$L_{2}(7)$	$2^{3} \cdot 3 \cdot 7$	2
$S_{4}(7)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 7^{4}$	2
$L_{2}\left(7^{2}\right)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{2}$	4
J_{2}	$2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7$	2
$U_{5}(2)$	$2^{10} \cdot 3^{5} \cdot 5 \cdot 11$	2
$U_{6}(2)$	$2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11$	6
$L_{2}(11)$	$2^{2} \cdot 3 \cdot 5 \cdot 11$	2
M_{11}	$2^{4} \cdot 3^{2} \cdot 5 \cdot 11$	1
M_{12}	$2^{6} \cdot 3^{3} \cdot 5 \cdot 11$	2
M_{22}	$2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11$	2
$H S$	$2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11$	2
$M^{c} L$	$2^{7} \cdot 3^{6} \cdot 5^{3} \cdot 7 \cdot 11$	2
${ }^{3} D_{4}(2)$	$2^{12} \cdot 3^{4} \cdot 7^{2} \cdot 13$	3
${ }^{2} F_{4}(2)^{\prime}$	$2^{11} \cdot 3^{3} \cdot 5^{2} \cdot 13$	2
$U_{3}\left(2^{2}\right)$	$2^{6} \cdot 3 \cdot 5^{2} \cdot 13$	4
$G_{2}\left(2^{2}\right)$	$2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13$	2
$S_{4}\left(2^{3}\right)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 13$	6
$S_{z}\left(2^{3}\right)$	$2^{6} \cdot 5 \cdot 7 \cdot 13$	3
$L_{2}\left(2^{6}\right)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13$	6
$L_{3}(3)$	$2^{4} \cdot 3^{3} \cdot 13$	2
$L_{4}(3)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 13$	4
$L_{5}(3)$	$2^{9} \cdot 3^{10} \cdot 5 \cdot 11^{2} \cdot 13$	2
$L_{6}(3)$	$2^{11} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2}$	4
$O_{7}(3)$	$2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$	2
$O_{8}^{+}(3)$	$2^{12} \cdot 3^{12} \cdot 5^{2} \cdot 7 \cdot 13$	24
$G_{2}(3)$	$2^{6} \cdot 3^{6} \cdot 7 \cdot 13$	2
$S_{6}(3)$	$2^{9} \cdot 3^{9} \cdot 5 \cdot 7 \cdot 13$	2
$L_{3}\left(3^{2}\right)$	$2^{7} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 13$	4
$L_{2}\left(3^{3}\right)$	$2^{2} \cdot 3^{3} \cdot 7 \cdot 13$	6
$U_{4}(5)$	$2^{7} \cdot 3^{4} \cdot 5^{6} \cdot 7 \cdot 13$	4
$S_{4}(5)$	$2^{6} \cdot 3^{2} \cdot 5^{4} \cdot 13$	2
		2

$L_{2}\left(5^{2}\right)$	$2^{3} \cdot 3 \cdot 5^{2} \cdot 13$	4
$L_{2}(13)$	$2^{2} \cdot 3 \cdot 7 \cdot 13$	2
$S u z$	$2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	2
$F i_{22}$	$2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13$	2
$S_{8}(2)$	$2^{16} \cdot 3^{5} \cdot 5^{2} \cdot 7 \cdot 17$	1
$O_{8}^{-}(2)$	$2^{12} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 17$	2
$O_{10}^{-}(2)$	$2^{20} \cdot 3^{6} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 17$	2
$F_{4}(2)$	$2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17$	2
$L_{4}\left(2^{2}\right)$	$2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17$	4
$U_{4}\left(2^{2}\right)$	$2^{12} \cdot 3^{2} \cdot 5^{3} \cdot 13 \cdot 17$	4
$S_{4}\left(2^{2}\right)$	$2^{8} \cdot 3^{2} \cdot 5^{2} \cdot 17$	4
$S_{6}\left(2^{2}\right)$	$2^{18} \cdot 3^{4} \cdot 5^{3} \cdot 7 \cdot 13 \cdot 17$	2
$O_{8}^{+}\left(2^{2}\right)$	$2^{24} \cdot 3^{5} \cdot 5^{4} \cdot 7 \cdot 13 \cdot 17^{2}$	12
$L_{2}\left(2^{4}\right)$	$2^{4} \cdot 3 \cdot 5 \cdot 17$	4
$L_{3}\left(2^{4}\right)$	$2^{12} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17$	24
$S_{4}(13)$	$2^{6} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{4} \cdot 17$	2
$L_{2}\left(13^{2}\right)$	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17$	4
$L_{2}(17)$	$2^{4} \cdot 3^{2} \cdot 17$	2
$U_{3}(17)$	$2^{6} \cdot 3^{4} \cdot 7 \cdot 13 \cdot 17^{3}$	6
$H e$	$2^{10} \cdot 3^{3} \cdot 5^{2} \cdot 7^{3} \cdot 17$	2
${ }^{2} E_{6}(2)$	$2^{36} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$	6
$U_{3}\left(2^{3}\right)$	$2^{9} \cdot 3^{4} \cdot 7 \cdot 19$	18
$U_{4}\left(2^{3}\right)$	$2^{18} \cdot 3^{7} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19$	6
$L_{3}(7)$	$2^{5} \cdot 3^{2} \cdot 7^{3} \cdot 19$	6
$L_{4}(7)$	$2^{9} \cdot 3^{4} \cdot 5^{2} \cdot 7^{6} \cdot 19$	4
$L_{3}(11)$	$2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11^{3} \cdot 19$	2
$L_{2}(19)$	$2^{2} \cdot 3^{2} \cdot 5 \cdot 19$	2
$U_{3}(19)$	$2^{5} \cdot 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 19^{3}$	2
J_{1}	$2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 19$	1
J_{3}	$2^{7} \cdot 3^{5} \cdot 5 \cdot 17 \cdot 19$	2
F_{5}	$2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 7 \cdot 11 \cdot 19$	2

Lemma 3.1. Let $p \in\{2,5,7,11,13,17\}$ and $x \in \mathbb{A}_{22}$. If $p \cdot 19\left|\left|C_{\mathbb{A}_{22}}(x)\right|\right.$, then either $x=1$ or $\left|C_{\mathbb{A}_{22}}(x)\right|=\frac{19!\times 3}{2}$ and x is a 3 -cycle.
 the symmetric group of degree $22, C_{x}$ is the conjugacy class of S_{22} containing x and x has $x_{1} 1$-cycles, $x_{2} 2$-cycles and so on, up to $x_{22} 22$-cycles, where $1 x_{1}+2 x_{2}+\cdots+22 x_{22}=22$. But $\left|C_{x}\right|=\left[S_{22}: C_{S_{22}}(x)\right]$ thus $\left|C_{S_{22}}(x)\right|=$ $\frac{22!}{\left|C_{x}\right|}=1^{x_{1}} x_{1}!2^{x_{2}} x_{2}!\cdots 22^{x_{22}} x_{22}!$.

Assume that there exists $p \in\{2,5,7,11,13,17\}$ and $x \in \mathbb{A}_{22}$ such that $p \cdot 19\left|\left|C_{\mathbb{A}_{22}}(x)\right|\right.$, where x has $x_{1} 1$-cycles, $x_{2} 2$-cycles and so on, up to $x_{22} 22$ cycles.

Thus $p \cdot 19 \mid 1^{x_{1}} x_{1}!2^{x_{2}} x_{2}!\cdots 22^{x_{22}} x_{22}$! since $\left|C_{\mathbb{A}_{22}}(x)\right|\left|\left|C_{S_{22}}(x)\right|\right.$. It is easy to see that $x_{19}=1$ or $x_{1} \geq 19$. But if $x_{19}=1$, then x is a 19 -cycle or x is the product of a 19 -cycle and a 3 -cycle, since x is an even permutation. In any case $\left|C_{\mathbb{A}_{22}}(x)\right|=19 \cdot 3$. But for all $p \in\{2,5,7,11,13,17\}, p \nmid 19 \cdot 3$ and this implies that $x_{19}=0$ and $x_{1} \neq 19$. Since x is an even permutation, $x_{2}=0$ and $x_{1}=22$ or $x_{1}=19, x_{3}=1$. It means that $x=1$ or $\left|C_{\mathbb{A}_{22}}(x)\right|=\frac{19!\times 3}{2}$ and x is a 3 -cycle.

Lemma 3.2. If $\nabla(G) \cong \nabla\left(\mathbb{A}_{22}\right)$, then $p \cdot 19 \notin \pi_{e}(G)$ for all $p \in\{2,5,7,11,13$, 17\}.
Proof. Assume there exists $p \in\{2,5,7,11,13,17\}$ such that $p \cdot 19 \in \pi_{e}(G)$. So there exists $x \in G-Z(G)$ such that $o(x)=|\langle x\rangle|=p \cdot 19$. It is obvious that $p \cdot 19\left|\left|C_{G}(x)\right|\right.$, since $\langle x\rangle \leq C_{G}(x)$. But $\nabla(G) \cong \nabla\left(\mathbb{A}_{22}\right)$, thus by Lemma 2.3 $\left|C_{G}(x)\right|=\left|C_{\mathbb{A}_{22}}(\phi(x))\right|$ for all $x \in G-Z(G)$, where ϕ is an isomorphism from $\nabla(G)$ to $\nabla\left(\mathbb{A}_{22}\right)$. Hence $p \cdot 19\left|\left|C_{\mathbb{A}_{22}}(\phi(x))\right|\right.$, which implies that $| C_{\mathbb{A}_{22}}(\phi(x)) \mid=$ $\frac{19!\times 3}{2}$ and $\phi(x)$ is a 3-cycle or $\phi(x)=1$ by Lemma 3.1. But clearly $\phi(x) \neq 1$, since $\phi(x) \notin Z\left(\mathbb{A}_{22}\right)$ and so $\left|C_{G}(x)\right|=\left|C_{\mathbb{A}_{22}}(\phi(x))\right|=\frac{19!\times 3}{2}$. Let $C_{G}(x)=$ $\left\{g_{1}, g_{2}, \ldots, g_{\frac{19 \times 3}{2}}\right\}$, where $g_{1}=1$. We have $x \in C_{G}\left(g_{i}\right)$ and $g_{i} \notin Z(G)$ for $i=2,3, \ldots, \frac{19!\times 3}{2}$ and since $o(x)=p \cdot 19$, by similar argument we obtain $\left|C_{\mathbb{A}_{22}}\left(\phi\left(g_{i}\right)\right)\right|=\frac{19!\times 3}{2}$ and $\phi\left(g_{i}\right)$ is a 3 -cycle for $i=2,3, \ldots, \frac{19!\times 3}{2}$. But the number of 3 -cycles in \mathbb{A}_{22} is equal to $\binom{22}{3} \times 2=\frac{22 \times 21 \times 20}{6} \times 2=3080$. Hence the number of distinct $\phi\left(g_{i}\right)$ must be less than or equal to 3080 . But $\frac{19!\times 3}{2}-1>$ 3080 and so there exist $i, j=2,3, \ldots, \frac{19!\times 3}{2}$ such that $\phi\left(g_{i}\right)=\phi\left(g_{j}\right)$ which is a contradiction since ϕ is injective.

Now we suppose that N is a minimal normal subgroup of G. Hence N is characteristically simple and so N is the direct product of isomorphic simple groups. Let $N \cong A \times A \times \cdots \times A$, where A is a simple group. In the sequel we will prove that $N \cong \mathbb{A}_{22}$.
Lemma 3.3. Let N be a minimal normal subgroup of G. If N is non-abelian, then $\pi(N)=\pi(G)=\pi\left(\mathbb{A}_{22}\right)$ and N is a simple subgroup of G.

Proof. Since N is non-abelian, A is non-abelian too. Thus A is a non-abelian simple group and so $2||A|$ and since $| A|||N|$, we have 2$|| N \mid$. Also we know that $|N|\left||G|=\left|\mathbb{A}_{22}\right|=2^{18} \cdot 3^{9} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13 \cdot 17 \cdot 19\right.$. Therefore N is the direct product of at most 18 isomorphic simple groups. Thus there exists $r \leq 18$ such that $|\operatorname{Aut}(N)|=|\operatorname{Aut}(A)|^{r} \cdot r!=|\operatorname{Out}(A)|^{r} \cdot|A|^{r} \cdot r!$, where A is a simple group such that $\pi(A) \subseteq\{2,3,5,7,11,13,17,19\}$, since $|A|||N|||G|$. Because $\pi(A) \subseteq$ $\{2,3,5,7,11,13,17,19\},\left|\operatorname{Out}\left(\mathbb{A}_{n}\right)\right|=2$ for all $n \geq 7$ and by Table 1 it follows that $19 \nmid|\operatorname{Out}(A)|$. Now if $19 \nmid|A|$, then $19 \nmid|N|$ and $19 \nmid|\operatorname{Aut}(N)|=|\operatorname{Aut}(A)|^{r}$. $r!=|\operatorname{Out}(A)|^{r} \cdot|A|^{r} \cdot r!(r \leq 18)$ and since $\left.\frac{|G|}{\left|C_{G}(N)\right|}=\frac{22!/ 2}{\mid C_{G}(N)}| | \operatorname{Aut}(N) \right\rvert\,$, we have $19\left|\left|C_{G}(N)\right|\right.$. Thus there exists an element $x \in C_{G}(N)$ such that $o(x)=19$ and since $2||N|$ we can find an element $y \in N$ such that $o(y)=2$. Because $x y=y x$
it follows that $o(x y)=2 \cdot 19$. This contradicts Lemma 3.2 and so $19 \| N \mid$ and $19 \in \pi(N)=\pi(A)$. But $19^{2} \nmid|G|$ and $|N|=|A|^{r}| | G \mid$. Hence $r=1$ and N is a simple subgroup of G. By similar argument $2,5,7,11,13,17 \in \pi(A)=\pi(N)$. Thus $\{2,5,7,11,13,17,19\} \subseteq \pi(A)=\pi(N)$. It is sufficient to prove that $3 \in \pi(N)$. If N is an alternating group, then $N \cong \mathbb{A}_{19}, \mathbb{A}_{20}, \mathbb{A}_{21}$ or \mathbb{A}_{22}, which in any case $3||N|$. If N is a simple group except alternating groups, then since $\{2,5,7,11,13,17,19\} \subseteq \pi(N) \subseteq\{2,3,5,7,11,13,17,19\}$ by Table $1,3 \in \pi(N)$.

Lemma 3.4. Let N be a minimal normal subgroup of G. If N is non-abelian, then $N \cong \mathbb{A}_{22}$.

Proof. By Lemma 3.3 and Table 1 it is easy to see that N is an alternating group. Thus $N \cong \mathbb{A}_{19}, \mathbb{A}_{20}, \mathbb{A}_{21}$ or \mathbb{A}_{22}. Suppose there exists $i=19,20,21$ such that $N \cong \mathbb{A}_{i}$. Since $|\operatorname{Aut}(N)|=\left|\operatorname{Aut}\left(\mathbb{A}_{i}\right)\right|=i$!, we have $\frac{|G|}{\left|C_{G}(N)\right|}=$ $\frac{11 \times 21!}{\mid C_{G}(N)}\left||\operatorname{Aut}(N)|=i\right.$!. Thus there exists $k \in \mathbb{N}$ such that $i!=\frac{11 \times 21!}{\mid C_{G}(N)} \times k$. Therefore $\left|C_{G}(N)\right|=11 \times \frac{21!}{i!} \times k$. Since $i \leq 21, \frac{21!}{i!} \in \mathbb{N}$ and so $11\left|\left|C_{G}(N)\right|\right.$. Thus there exists an element $x \in C_{G}(N)$ such that $o(x)=11$ and since $19||N|$, we can find an element $y \in N$ such that $o(y)=19$. But $x y=y x$ and so $o(x y)=11 \cdot 19$. This is a contradiction by Lemma 3.2.

Lemma 3.5. If N is a minimal normal subgroup of G, then N is not isomorphic to \mathbb{Z}_{3}^{i} for $i=1,2, \ldots, 9$ (direct product of i cyclic group \mathbb{Z}_{3}).
Proof. We know that N is a union of conjugacy classes of G and the size of each conjugacy class of G and \mathbb{A}_{22} are the same by Lemma 2.3. But it is obvious that $\frac{19!\times 3}{2}$ is the maximum centralizer order in \mathbb{A}_{22} and G. Thus the minimum size of a conjugacy class in G is equal to $\frac{19!\times 20 \times 21 \times 22 / 2}{\frac{199 \times 3}{2}}=3080$. Hence all normal subgroups except the trivial subgroup have more than 3080 elements. But $\mathbb{Z}_{3}^{i}=\mathbb{Z}_{3} \times \mathbb{Z}_{3} \times \cdots \times \mathbb{Z}_{3}(i$ times $)$ has at most 2187 elements for $i=1,2, \ldots, 7$ and so N is not isomorphic to \mathbb{Z}_{3}^{i} for $i=1,2, \ldots, 7$. Clearly the second centralizer order in \mathbb{A}_{22} and G is $\frac{18!\times 8}{2}$ (in fact the centralizer order of a permutation of type 2^{2}). Thus after 3080, minimum size of conjugacy class in G is equal to $\frac{18!\times 19 \times 20 \times 21 \times 22 / 2}{18!\times 8 / 2}=21945$. But \mathbb{Z}_{3}^{8} and \mathbb{Z}_{3}^{9} have at most 19683 elements. Therefore there exists $m \in N$ such that $|N|=1+3080 \times m$. It means that $3080\left||N|-1\right.$ and since $3080 \nmid\left(\left|\mathbb{Z}_{3}^{8}\right|-1\right),\left(\left|\mathbb{Z}_{3}^{9}\right|-1\right), N$ is not isomorphic to \mathbb{Z}_{3}^{8} and \mathbb{Z}_{3}^{9}. Hence N is not isomorphic to the direct product of \mathbb{Z}_{3}.

Lemma 3.6. If N is a minimal normal subgroup of G, then N is non-abelian.
Proof. Suppose that N is a minimal normal and abelian subgroup of G. Thus there exists $p \in\{2,3,5,7,11,13,17,19\}$ such that N is isomorphic to the direct product of \mathbb{Z}_{p}. By Lemma 3.5 we have $p \neq 3$. If $N \cong \mathbb{Z}_{19}$, then $|\operatorname{Aut}(N)|=$ $19 \cdot 18$. Thus $17 \nmid|\operatorname{Aut}(N)|$ and since $\left.\frac{|G|}{C_{G}(N) \mid}=\frac{22!/ 2}{\left|C_{G}(N)\right|}| | \operatorname{Aut}(N) \right\rvert\,$, we have $17\left|\left|C_{G}(N)\right|\right.$. So there exists $x \in C_{G}(N)$ such that $o(x)=17$ and since $| N \mid=19$
we can find an element $y \in N$ such that $o(y)=19$. But $x y=y x$ and so $o(x y)=17 \cdot 19$. This contradicts Lemma 3.2. Hence $p \neq 3,19$. By similar argument we can see $p \neq 2,5,7,11,13,17$ and the proof is completed.
Lemma 3.7. If N is a minimal normal subgroup of G, then N is non-abelian and $N \cong \mathbb{A}_{22}$.

Proof. This follows immediately from Lemmas 3.6 and 3.4.
We assume that N is a minimal normal subgroup of G. From Lemma 3.7, $N \cong \mathbb{A}_{22}$. But $|N|=\left|\mathbb{A}_{22}\right|=|G|$ and $N \leq G$. Hence $N=G$ and therefore $G \cong \mathbb{A}_{22}$.

References

[1] A. Abdollahi, Characterization of $S L(2, q)$ by its non-commuting graph, Beiträge Algebra Geom. 50 (2009), no. 2, 443-448.
[2] A. Abdollahi, S. Akbari, and H. R. Maimani, Non-commuting graph of a group, J. Algebra 298 (2006), no. 2, 468-492.
[3] M. R. Darafsheh, Groups with the same non-commuting graph, Discrete Appl. Math. 157 (2009), no. 4, 833-837.
[4] M. R. Darafsheh and M. D. Monfared, Characterization of \mathbb{A}_{16} by non-commuting graph, Ukrainian Mathematical Journal 62 (2011), no. 11, 1673-1679.
[5] L. Wang and W. Shi, A new characterization of $L_{2}(q)$ by its non-commuting graph, Front. Math. China 2 (2007), no. 1, 143-148.
[6], A new characterization of \mathbb{A}_{10} by its non-commuting graph, Comm. Algebra 36 (2008), no. 2, 523-528.
[7] , A new characterization of $U_{4}(7)$ by its noncommuting graph, J. Algebra Appl. 8 (2009), no. 1, 105-114.
[8] , New characterization of $S_{4}(q)$ by its noncommuting graph, Sib. Math. J. 50 (2009), no. 3, 533-540.
[9]
_, Recognition of some simple groups by their noncommuting graph, Monatsh. Math. 160 (2010), no. 2, 211-221.

Mohammad Reza Darafsheh
School of Mathematics
Statistics and Computer Science College of Science
University of Tehran
Tehran, Iran
E-mail address: darafsheh@ut.ac.ir
Pedram Yosefzadeh
Department of Mathematics
K. N. Toosi University of Technology

Tehran, Iran
E-mail address: pedram_yous@yahoo.com

