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NONEMPTY INTERSECTION THEOREMS

AND SYSTEM OF GENERALIZED VECTOR

EQUILIBRIUM PROBLEMS IN FC-SPACES

Rong-Hua He and Hong-Xu Li

Abstract. By using some existence theorems of maximal elements for
a family of set-valued mappings involving a better admissible set-valued
mapping under noncompact setting of FC-spaces, we present some non-
empty intersection theorems for a family {Gi}i∈I in product FC-spaces.
Then, as applications, some new existence theorems of equilibrium for a
system of generalized vector equilibrium problems are proved in product
FC-spaces. Our results improve and generalize some recent results.

1. Introduction and preliminaries

The vector variational inequality problem (in short, V V IP ) was first intro-
duced by Giannessi [17] in finite dimensional Euclidean spaces. Since then,
the V V IP has been generalized and applied by many authors in various di-
rections. Inspired and motivated by applications of the V V IP with set-valued
mappings, various generalized vector variational inequality problem (in short,
GV V IP ) and generalized vector equilibrium problem (in short, GV EP ) have
become important developed directions of the classical V V IP (see, for example,
[1, 3, 4, 6, 15, 22] and the book edited by F. Giannessi [18], and the references
therein).

Recently, Ding [12] introduced and studied a system of generalized vector
equilibrium problems in the product space of G-convex spaces. Let X be a
topological space and I be any index set. Let {Di}i∈I , {Ei}i∈I , {Yi}i∈I and
{Zi}i∈I be four families of topological spaces, and let Y =

∏

i∈I Yi. For each

i ∈ I, let Ti : X → 2Di , Si : X → 2Ei, Ci : X → 2Zi and ηi : Di×Ei×Yi → 2Zi

be set-valued mappings. A system of generalized vector equilibrium problems
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(in short, SGV EP ) is to find x̂ ∈ X such that for each i ∈ I,

(1) ∀yi ∈ Yi, ∃d̂i ∈ Ti(x̂), êi ∈ Si(x̂) such that ηi(d̂i, êi, yi) 6⊆ Ci(x̂).

Motivated and inspired by the above research works, we shall present some
nonempty intersection theorems for a family {Gi}i∈I in a product FC-spaces,
which are generalizations of G-convex spaces, by applying an existence theo-
rems of maximal elements obtained by He and Zhang [20]. As applications,
several new existence theorems of equilibrium points for the SGV EP (1) are
established in product FC-space. Our results improve and generalize the cor-
responding results in [2, 12, 14, 19, 23].

Let X and Y be two nonempty sets. We denote by 2Y and 〈X〉 the family
of all subsets of Y and the family of all nonempty finite subsets of X , respec-
tively. Let ∆n denote the standard n-dimensional simplex with the vertices
{e0, . . . , en}. If J is a nonempty subset of {0, 1, . . . , n}, we shall denote by △J

the convex hull of the vertices {ej : j ∈ J}. For topological spaces X and Y ,
a subset A of X is said to be compactly open (resp., compactly closed) if for
each nonempty compact subset K of X , A

⋂

K is open (resp., closed) in K.
The compact closure of A and the compact interior of A (see [5]) are defined
respectively by

cclA =
⋂

{B ⊂ X : A ⊂ B and B is compactly closed in X},

cintA =
⋃

{B ⊂ X : B ⊂ A and B is compactly open in X}.

A set-valued mapping T : X → 2Y is said to be transfer compactly closed
valued on X (see [5]) if for each x ∈ X and y 6∈ T (x), there exists x′ ∈ X such
that y 6∈ cclT (x′). T is said to be transfer compactly open valued on X if for
each x ∈ X and y ∈ T (x), there exists x′ ∈ X such that y ∈ cintT (x′).

First, we recall the following concepts (see [13, 20]).

Definition 1.1. (X,ϕN ) is said to be an FC-space if X is a topological space
and for each N = {x0, . . . , xn} ∈ 〈X〉, where some elements in N may be same,
there exists a continuous mapping ϕN : ∆n → X . A subset D of X is said
to be an FC-subspace of X if for each N = {x0, . . . , xn} ∈ 〈X〉 and for each
{xi0 , . . . , xik} ⊂ N

⋂

D, ϕN (∆k) ⊂ D, where ∆k = co({eij : j = 0, . . . , k}).

Definition 1.2. An FC-space (X,ϕN ) is said to be a CFC-space if for each
N ∈ 〈Y 〉, there exists a compact FC-subspace LN of Y containing N .

Now, we give some lemmas which will be useful in the proof of our main
results (see [13, 20]).

Lemma 1.1. Let I be any index set. For each i ∈ I, let (Yi, ϕNi
) be an FC-

space, Y =
∏

i∈I Yi and ϕN =
∏

i∈I ϕNi
. Then (Y, ϕN ) is also an FC-space.

The following notion was introduced by He and Zhang [20]. Let X be a
topological space and I be any index set. For each i ∈ I, let (Yi, ϕNi

)i∈I be
an FC-space and Y =

∏

i∈I Yi such that (Y, ϕN ) is an FC-space defined as in
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Lemma 1.1. Let F ∈ B(Y,X) and Ai : X → 2Yi , i ∈ I be set-valued mappings.
For each i ∈ I,

(1) Ai : X → 2Yi is said to be a generalized GB-mapping if
(a) for each N = {y0, . . . , yn} ∈ 〈Y 〉 and {yi0 , . . . , yik} ⊂ N ,

F (ϕN (∆k))
⋂





k
⋂

j=0

cintA−1

i (πi(yij ))



 = ∅,

where πi is the projection of Y onto Yi and ∆k = co({eij : j =
0, . . . , k});

(b) A−1

i (yi) = {x ∈ X : yi ∈ Ai(x)} is transfer compactly open in Yi

for each yi ∈ Yi.
(2) Ax,i : X → 2Yi is said to be a generalized GB-majorant of Ai at

x ∈ X if Ax,i is a generalized GB-mapping and there exists an open
neighborhood N(x) of x in X such that Ai(z) ⊂ Ax,i(z) for all z ∈
N(x).

(3) Ai is said to be a generalized GB-majorized if for each x ∈ X with
Ai(x) 6= ∅, there exists a generalized GB-majorant Ax,i of Ai at x, and

for any N ∈ 〈{x ∈ X : Ai(x) 6= ∅}〉, the mapping
⋂

x∈N A−1

x,i is transfer
compactly open in Yi.

(4) {Ai}i∈I is said to be a family of generalized GB-mappings (resp., GB-
majorant mappings) if for each i ∈ I, Ai : X → 2Yi is a generalized
GB-mapping (resp., GB-majorant mapping).

Lemma 1.2. Let X be a topological space, K be a nonempty compact subset

of X and I be any index set. For each i ∈ I, let (Yi, ϕNi
) be an FC-space and

Y =
∏

i∈I Yi such that (Y, ϕN ) is an FC-space defined as in Lemma 1.1. Let

F ∈ B(Y,X) and for each i ∈ I, Ai : X → 2Yi be a generalized GB-mapping

such that the following condition holds:

(P) For each i ∈ I and Ni ∈ 〈Yi〉, there exists a compact FC-subspace LNi

of Yi containing Ni and for each x ∈ X\K, there exists i ∈ I satisfying

LNi

⋂

cintAi(x) 6= ∅.

Then there exists x̂ ∈ K such that Ai(x̂) = ∅ for each i ∈ I.

Lemma 1.3. Let X be a topological space, and let I be any index set. For each

i ∈ I, let (Yi, ϕNi
) be an CFC-space, and let Y =

∏

i∈I Yi. Let F ∈ B(Y,X) be
a compact mapping such that the following two conditions hold for each i ∈ I:

(i) Ai : X → 2Yi be a generalized GB-majorized mapping;
(ii)

⋃

i∈I{x ∈ X : Ai(x) 6= ∅} =
⋃

i∈I cint{x ∈ X : Ai(x) 6= ∅}.

Then there exists x̂ ∈ X such that Ai(x̂) = ∅ for each i ∈ I.
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2. Nonempty intersection theorems

Definition 2.1. Let D, E, Y and Z be nonempty sets and X be a topological
space. Let F : D × E × Y → 2Z and C : X → 2Z be two set-valued map-
pings. F (d, e, y) is said to be transfer compactly upper semicontinuous in x

with respect to C if for any nonempty compact subset K of X and any x ∈ K,
{(d, e, y) ∈ D × E × Y : F (d, e, y) ⊆ C(x)} 6= ∅ implies that there exist a
relatively open neighborhood N(x) of x in K and (d′, e′, y′) ∈ D×E × Y such
that F (d′, e′, y′) ⊆ C(z) for all z ∈ N(x).

We first give the following nonempty intersection theorem which is in fact
equivalent to Lemma 1.2.

Theorem 2.1. Let X be a topological space, K be a nonempty compact subset

of X and I be any index set. For each i ∈ I, let (Yi, ϕNi
) be an FC-space and

Y =
∏

i∈I Yi such that (Y, ϕN ) is an FC-space defined as in Lemma 1.1. Let

F ∈ B(Y,X) and Gi : Yi → 2X be such that the following conditions hold:

(i) For each yi ∈ Yi, Gi(yi) is transfer compactly closed in Yi.

(ii) For each N = {y0, . . . , yn} ∈ 〈Y 〉 and {yr0, . . . , yrk} ⊂ N ,

F (ϕN (∆k))
⋂





k
⋂

j=0

cint(X\Gi(πi(yrj)))



 = ∅,

where πi is the projection of Y onto Yi and ∆k = co({erj : j =
0, . . . , k}).

(iii) For each i ∈ I and Ni ∈ 〈Yi〉, there exists a compact FC-subspace LNi

of Yi containing Ni and for each x ∈ X\K, there exists i ∈ I satisfying

LNi

⋂

cint(Yi\G
−1

i (x)) 6= ∅.

Then we have

K
⋂





⋂

i∈I

⋂

yi∈Yi

Gi(yi)



 6= ∅.

Proof. Lemma 1.2 ⇒ Theorem 2.1. For each i ∈ I, define a set-valued mapping
Ai : X → 2Yi by

Ai(x) = Yi\G
−1

i (x), ∀x ∈ X.

Then for each yi ∈ Yi, we have

A−1

i (yi) = {x ∈ X : yi ∈ Ai(x)} = {x ∈ X : yi ∈ Yi\G
−1

i (x)}

= {x ∈ X : x 6∈ Gi(yi)} = X\Gi(yi).

Hence A−1

i (yi) is transfer compactly open in X by condition (i). The condi-
tion (ii) of Theorem 2.1 implies that for each N = {y0, . . . , yn} ∈ 〈Y 〉 and
{yr0 , . . . , yrk} ⊂ N ,

F (ϕN (∆k))
⋂





k
⋂

j=0

cintA−1

i (πi(yrj ))



 = ∅,
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where πi is the projection of Y onto Yi and ∆k = co({erj : j = 0, . . . , k}). So

for each i ∈ I, Ai : X → 2Yi is a generalized GB-mapping. The condition (iii)
of Theorem 2.1 implies that the condition (P) of Lemma 1.2 holds. Then by
Lemma 1.2, there exists x̂ ∈ K such that Ai(x̂) = ∅ for each i ∈ I. Therefore,
we have Ai(x̂) = Yi\G

−1

i (x̂) = ∅, and then Yi = G−1

i (x̂) for i ∈ I. This implies
that

x̂ ∈
⋂

i∈I

⋂

yi∈Yi

Gi(yi).

Hence we obtain

K
⋂





⋂

i∈I

⋂

yi∈Yi

Gi(yi)



 6= ∅.

Theorem 2.1 ⇒ Lemma 1.2. For each i ∈ I, define a set-valued mapping
Gi : Yi → 2X by

Gi(yi) = X\A−1

i (yi), ∀yi ∈ Yi.

Since for each i ∈ I, Ai : X → 2Yi is a generalized GB-mapping, conditions (i)
and (ii) of Theorem 2.1 are satisfied. Condition (P) of Lemma 1.2 implies that
condition (iii) of Theorem 2.1 holds. Consequently, all conditions of Theorem
2.1 are satisfied, and then we have

K
⋂





⋂

i∈I

⋂

yi∈Yi

Gi(yi)



 6= ∅.

Taking any x̂ ∈ K
⋂

(
⋂

i∈I

⋂

yi∈Yi
Gi(yi)) 6= ∅, we have x̂ ∈ K and

x̂ ∈ Gi(yi) = X\A−1

i (yi) for yi ∈ Yi, i ∈ I,

which implies

yi 6∈ Ai(x̂) for yi ∈ Yi, i ∈ I.

So Ai(x̂) = ∅ for all i ∈ I. This completes the proof. �

Remark 2.1. Since Theorem 2.1 is an equivalent form of Lemma 1.2, Theorem
2.1 generalizes Theorem 2 and Theorem 4 of Park and Kim [23]. Moreover,
Theorem 2.1 improves and generalizes Theorem 2.1 of Ding [12] in the follow-
ing ways: (a) The setting spaces are generalized from “G-convex spaces” to
“FC-spaces” without linear structure; (b) The assumption for mapping Gi is
generalized from “compactly closed” to “transfer compactly closed”; (c) Con-
ditions (ii) and (iii) of Theorem 2.1 are weaker than conditions (ii) and (iii) of
Theorem 2.1 in [12].

Especially, if X = Y in Theorem 2.1, we have the following result, which
improves Theorem 3.2 in Ding [14].

Corollary 2.1. Let I be any index set. For each i ∈ I, let (Xi, ϕNi
) be an

FC-space and X =
∏

i∈I Xi such that (X,ϕN ) is an FC-space defined as in
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Lemma 1.1. Let K be a nonempty compact subset of X and Gi : Xi → 2X be

such that the following conditions hold:

(i) For each xi ∈ Xi, Gi(xi) is transfer compactly closed in Xi.

(ii) For each N = {x0, . . . , xn} ∈ 〈X〉 and {xr0 , . . . , xrk} ⊂ N ,

ϕN (∆k)
⋂





k
⋂

j=0

cint(X\Gi(πi(xrj )))



 = ∅,

where πi is the projection of X onto Xi and ∆k = co({erj : j =
0, . . . , k}).

(iii) For each i ∈ I and Ni ∈ 〈Xi〉, there exists a compact FC-subspace LNi

of Xi containing Ni and for each x ∈ X\K, there exists i ∈ I satisfying

LNi

⋂

cint(Xi\G
−1

i (x)) 6= ∅.

Then we have

K
⋂

(

⋂

i∈I

⋂

xi∈Xi

Gi(xi)

)

6= ∅.

Proof. For each i ∈ I, let Yi = Xi, X = Y =
∏

i∈I Xi and F be the identity
mapping on X . Then all the conditions of Theorem 2.1 are satisfied and the
proof is completed. �

IfXi in Corollary 2.1 is a compact FC-space for each I, we have the following
result with simpler form.

Corollary 2.2. Let I be any index set. For each i ∈ I, let (Xi, ϕNi
) be a

compact FC-space and X =
∏

i∈I Xi such that (X,ϕN ) is an FC-space defined

as in Lemma 1.1. Let Gi : Xi → 2X be such that the following conditions hold

for each i ∈ I:

(i) for each xi ∈ Xi, Gi(xi) is transfer compactly closed in Xi;
(ii) for each N = {x0, . . . , xn} ∈ 〈X〉 and {xr0 , . . . , xrk} ⊂ N ,

ϕN (∆k)
⋂

(
⋂k

j=0
cint(X\Gi(πi(xrj )))) = ∅, where πi is the projection

of X onto Xi and ∆k = co({erj : j = 0, . . . , k}).

Then we have
⋂

i∈I

⋂

xi∈Xi

Gi(xi) 6= ∅.

Proof. For each i ∈ I and Ni ∈ 〈Xi〉, let LNi
= Xi and let K =

∏

i∈I Xi.
Then K = X is compact. Clearly the condition (iii) of Corollary 2.1 is satisfied
trivially. The conclusion of Corollary 2.2 holds from Corollary 2.1. �

By Corollary 2.1, we also have the following result, which improves Theorem
3.3 of Ding [14].

Corollary 2.3. Let I be any index set. For each i ∈ I, let (Xi, ϕNi
) be an

FC-space and X =
∏

i∈I Xi such that (X,ϕN ) is an FC-space defined as in
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Lemma 1.1, and let K be a nonempty compact subset of X. Let Gi : Xi → 2X

be such that the following conditions hold for each i ∈ I:

(i) For each xi ∈ Xi, Gi(xi) is transfer compactly closed in Xi.

(ii) For each x ∈ X,Xi\G
−1

i (x) is an FC-subspace of Xi.

(iii) For each x ∈ X, πi(x) ∈ G−1

i (x).
(iv) For each i ∈ I and Ni ∈ 〈Xi〉, there exists a compact FC-subspace LNi

of Xi containing Ni and for each x ∈ X\K, there exists i ∈ I satisfying

LNi

⋂

cint(Xi\G
−1

i (x)) 6= ∅.

Then we have

K
⋂

(

⋂

i∈I

⋂

xi∈Xi

Gi(xi)

)

6= ∅.

Proof. We first show that conditions (ii) and (iii) imply conditions (ii) of Corol-
lary 2.1 holds. If it is false, then there exist N = {x0, . . . , xn} ∈ 〈X〉 and
M = {xr0 , . . . , xrk} ⊂ N such that

ϕN (∆k)
⋂





k
⋂

j=0

cint(X\Gi(πi(xrj )))



 6= ∅.

Hence there exists x̂ ∈ ϕN (∆k) =
∏

i∈I ϕNi
(∆k) where Ni = πi(N) such

that x̂ 6∈ Gi(πi(x)) for all x ∈ M . So we have πi(M) ⊆ Xi\G
−1

i (x̂). Since

Xi\G
−1

i (x̂) is an FC-subspace of Xi by (ii), we have πi(ϕN (∆k)) ⊂ Xi \
G−1

i (x̂). So πi(x̂) ∈ Xi\G
−1

i (x̂) and then πi(x̂) 6∈ G−1

i (x̂), which contradicts the
condition (iii). This show that the conditions (ii) and (iii) imply the condition
(ii) of Corollary 2.1 holds. Corollary 2.3 follows from Corollary 2.1. �

As a direct consequence of Corollary 2.3, we have the following result, which
generalizes and improves Theorem 2.1 of Guillerme [19].

Corollary 2.4. Let I be any index set. For each i ∈ I, let (Xi, ϕNi
) be a

compact FC-space and X =
∏

i∈I Xi such that (X,ϕN ) is an FC-space defined

as in Lemma 1.1. Let Gi : Xi → 2X be such that the following conditions hold

for each i ∈ I:

(iii) For each xi ∈ Xi, Gi(xi) is transfer compactly closed in Xi.

(iii) For each x ∈ X,Xi\G
−1

i (x) is an FC-subspace of Xi.

(iii) For each x ∈ X, πi(x) ∈ G−1

i (x).

Then we have
⋂

i∈I

⋂

xi∈Xi

Gi(xi) 6= ∅.

3. System of generalized vector equilibrium problems

By using Theorem 2.1, we establish some new equilibrium existence results
for SGV EP (1) in this section.
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Theorem 3.1. Let X be a topological space, K be a nonempty compact subset

of X, I be any index set, (Yi, ϕNi
) be a family of FC-spaces, {Di}i∈I , {Ei}i∈I

and {Zi}i∈I be the families of topological spaces, and Y =
∏

i∈I Yi such that

(Y, ϕN ) is an FC-space defined as in Lemma 1.1. Let F ∈ B(Y,X), and for

each i ∈ I, Ti : X → 2Di , Si : X → 2Ei, Ci : X → 2Zi and ηi : Di × Ei × Yi →
2Zi be set valued mappings such that the following conditions hold for each

i ∈ I:

(i) ηi(di, ei, yi) is transfer compactly upper semicontinuous in x with re-

spect to Ci.

(ii) For each N = {y0, . . . , yn} ∈ 〈Y 〉 and N1 = {yr0 , . . . , yrk} ⊂ N , and

for each x ∈ F (ϕN (∆k)), there exists di ∈ Ti(x), ei ∈ Si(x) and y ∈ N1

such that ηi(di, ei, πi(y)) 6⊆ Ci(x).
(iii) For each Ni ∈ 〈Yi〉, there exists a compact FC-subspace LNi

of Yi

containing Ni, and for each x ∈ X\K, there exist i ∈ I and yi ∈ LNi

satisfying

yi 6∈ ccl{ui ∈ Yi : ∃di ∈ Ti(x), ei ∈ Si(x) such that ηi(di, ei, ui) 6⊆ Ci(x)}.

Then there exists x̂ ∈ K satisfying that, for each i ∈ I and yi ∈ Yi, there exist

d̂i ∈ Ti(x̂) and êi ∈ Si(x̂) such that ηi(d̂i, êi, yi) 6⊆ Ci(x̂).

Proof. For each i ∈ I, defined set-valued mappings Ti, Hi : Yi → 2X by

Ti(yi) = {x ∈ X : ∃di ∈ Ti(x) and ei ∈ Si(x) such that ηi(di, ei, yi) 6⊆ Ci(x)},

Hi(yi) = X\Ti(yi)

= {x ∈ X : ∃di ∈ Ti(x) and ei ∈ Si(x) such that ηi(di, ei, yi) ⊆ Ci(x)}.

Notice that for each i ∈ I, ηi(di, ei, yi) is transfer compactly upper semicontin-
uous in x with respect to Ci. Then for any nonempty compact subset K of X ,
if x ∈ Hi(yi)

⋂

K, we have x ∈ K and there exist di ∈ Ti(x) and ei ∈ Si(x)
such that ηi(di, ei, yi) ⊆ Ci(x), i.e.,

{(di, ei, yi) ∈ Di × Ei × Yi : ηi(di, ei, yi) ⊆ Ci(x)} 6= ∅.

By condition (i), there exists a relatively open neighborhood N(x) of x in K

and (d′i, e
′
i, y

′
i) ∈ Di × Ei × Yi such that ηi(d

′
i, e

′
i, y

′
i) ⊆ Ci(z) for all z ∈ N(x).

Then we have

x ∈ N(x) ⊆ intK(K
⋂

{z ∈ X : ηi(d
′
i, e

′
i, y

′
i) ⊆ Ci(z)})

= intK(Hi(y
′
i)
⋂

K) = cint(Hi(y
′
i))
⋂

K.

This implies that Hi is transfer compactly open in Yi. Thus for each i ∈ I and
yi ∈ Yi, Ti(yi) is transfer compactly closed in Yi. So condition (i) of Theorem
2.1 is satisfied.
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From the condition (ii) it follows that for each N = {y0, . . . , yn} ∈ 〈Y 〉 and
N1 = {yr0, . . . , yrk} ⊂ N , we have

F (ϕN (∆k)) ⊆
⋃

y∈N1

Ti(πi(y)) ⊂
⋃

y∈N1

cclTi(πi(y)),

and then

F (ϕN (∆k))
⋂





⋂

y∈N1

(X\cclTi(πi(y)))





= F (ϕN (∆k))
⋂





⋂

y∈N1

cint(X\Ti(πi(y)))



 = ∅.

This yields that condition (ii) of Theorem 2.1 is satisfied.
For each i ∈ I and x ∈ X , we have

T−1

i (x) = {yi ∈ Yi : ∃di ∈ Ti(x), ei ∈ Si(x) such that ηi(di, ei, yi) 6⊆ Ci(x)},

and hence

Yi\T
−1

i (x) = {yi ∈ Yi : ηi(di, ei, yi) ⊆ Ci(x), ∀di ∈ Ti(x), ei ∈ Si(x)}.

By condition (iii), for each Ni ∈ 〈Yi〉, there exists a compact FC-subspace LNi

of Yi containing Ni, and for each x ∈ X\K, there exist i ∈ I and yi ∈ LNi

satisfying

yi ∈ Yi\cclT
−1

i (x) = cint(Yi\T
−1

i (x)).

So we have

LNi

⋂

cint(Yi\T
−1

i (x)) 6= ∅.

Then condition (iii) of Theorem 2.1 is satisfied. Now by Theorem 2.1 we have

K
⋂





⋂

i∈I

⋂

yi∈Yi

Ti(yi)



 6= ∅.

Taking any x̂ ∈ K
⋂

(
⋂

i∈I

⋂

yi∈Yi
Ti(yi)), we obtain that x̂ ∈ K, and for each

i ∈ I and yi ∈ Yi there exist d̂i ∈ Ti(x̂) and êi ∈ Si(x̂) such that ηi(d̂i, êi, yi) 6⊆
Ci(x̂). This means that x̂ is an equilibrium point of the SGV EP (1). The
proof is complete. �

Corollary 3.1. Let I be any index set, (Xi, ϕN
′

i
)i∈I and (Yi, ϕNi

)i∈I be two

families of FC-spaces. Let {Zi}i∈I be a family of topological spaces and X =
∏

i∈I Xi, Y =
∏

i∈I Yi such that (X,ϕN
′ ), (Y, ϕN ) are FC-spaces defined as in

Lemma 1.1. Let F : Y → X be a continuous single-valued mapping and for

each i ∈ I, Ci : X → 2Zi , fi : X × Yi → 2Zi be set valued mappings such that

the following conditions holds:

(i) For each i ∈ I, fi(x, yi) is transfer compactly upper semicontinuous in

x with respect to Ci.
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(ii) For each N = {y0, . . . , yn} ∈ 〈Y 〉 and N1 = {yr0 , . . . , yrk} ⊂ N , and

for each x ∈ F (ϕN (∆k)), there exists y ∈ N1 such that fi(x, πi(y)) 6⊆
Ci(x).

(iii) There exists a nonempty compact subset Ki of Xi. Let K =
∏

i∈I Ki.

For each Ni ∈ 〈Yi〉, there exists a compact FC-subspace LNi
of Yi

containing Ni, and for each x ∈ X\K, there exist i ∈ I and yi ∈ LNi

satisfying

yi 6∈ ccl{ui ∈ Yi : fi(x, ui) 6⊆ Ci(x)}.

Then there exists x̂ ∈ K such that for each i ∈ I and yi ∈ Yi we have fi(x̂, yi) 6⊆
Ci(x̂).

Proof. Clearly K =
∏

i∈I Ki is a nonempty compact subset of X . For each

i ∈ I, let Di = Xi and Ei = X i =
∏

j∈I,j 6=i Xj . Write x = (xi, x
i) and

fi(x, yi) = ηi(xi, x
i, yi) for all x ∈ X and yi ∈ Yi. Let Ti(x) = πi(x) = xi and

Si(x) = πi(x) = xi for each i ∈ I and x ∈ X where πi and πi are the projection
mappings from X onto Xi and X i, respectively. It is easy to check that all
conditions of Theorem 3.1 are satisfied. By Theorem 3.1, there exists x̂ ∈ K

such that for each i ∈ I,

fi(x̂, yi) = ηi(x̂i, x̂
i, yi) 6⊆ Ci(x̂), ∀yi ∈ Yi.

This completes the proof. �

Remark 3.1. (I) Theorem 3.1 generalizes Theorem 3.1 in [12] in several aspects:
(a) The setting spaces are generalized from “family of G-convex spaces” to
“family of FC-space” without linear structure; (b) Conditions (i), (ii) and
(iii) of Theorem 3.1 in [12] are replaced by condition (i) of Theorem 3.1; (c)
conditions (ii) and (iii) of Theorem 3.1 are weaker than conditions (iv) and (v)
of Theorem 3.1 in [12].

(II) Corollary 3.1 generalizes Theorem 3.2 in [12] in the aspects similar as
those of Theorem 3.1 to Theorem 3.1 in [12]. Moreover, Corollary 3.1 improves
Theorem 2.1 and Theorem 2.2 in [2] from topological vector spaces to FC-space
under weaker assumptions.

When I be a singleton in Corollary 3.1, we obtain the following result.

Corollary 3.2. Let I be any index set, (X,ϕN
′ ) and (Y, ϕN ) be two FC-

spaces and Z be a topological space, F : Y → X be a continuous single-valued

mapping, C : X → 2Z and f : X × Y → 2Z be set-valued mappings such that

(i) For each f(x, y) is transfer compactly upper semicontinuous in x with

respect to C.

(ii) For each N = {y0, . . . , yn} ∈ 〈Y 〉, N1 = {yr0, . . . , yrk} ⊂ N and x ∈
F (ϕN (∆k)), there exists y ∈ N1 such that f(x, y) 6⊆ C(x).

(iii) There exists a nonempty compact subset K of X. For each N ∈ 〈Y 〉,
there exists a compact FC-subspace LN of Y containing N , and for
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each x ∈ X\K, there exists y ∈ LN satisfying

y 6∈ ccl{u ∈ Y : f(x, u) 6⊆ C(x)}.

Then there exists x̂ ∈ X such that f(x̂, y) 6⊆ C(x̂) for y ∈ Y .
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