DOI QR코드

DOI QR Code

미세유체 결정화기를 이용한 탄산칼슘 Biomineralization

CaCO3 Biomineralization in Microfluidic Crystallizer

  • Seo, Seung Woo (Department of Chemical Engineering, Chungnam National University) ;
  • Ko, Kwan Young (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang Soo (Department of Chemical Engineering, Chungnam National University) ;
  • Kim, In Ho (Department of Chemical Engineering, Chungnam National University)
  • 투고 : 2012.10.17
  • 심사 : 2012.11.20
  • 발행 : 2013.02.01

초록

Polydimethylsiloxane (PDMS) 기반의 미세유체 시스템을 이용해 탄산칼슘의 결정화 실험을 수행하였다. 탄산칼슘의 결정화를 위한 다양한 반응방법 중 액체-액체 반응을 위해 염화칼슘 수용액과 탄산나트륨 수용액을 사용하였고 아스파르트산을 첨가하여 탄산칼슘 결정 중 베터라이트와 칼사이트의 생성에 어떤 차이를 보이는지 조사하였다. 그리고 탄산칼슘의 결정화 진행상황에서 결정핵 생성에 유리한 염화칼슘과 탄산나트륨의 비율을 조사하였다. 이를 위해 크리스마스트리 모양의 미세유체 반응기를 사용하여 채널 내부에 염화칼슘과 탄산나트륨의 농도구배를 형성하도록 하였다. 미세유체 결정화기 내부를 광학현미경으로 촬영한 결과, 탄산나트륨과 염화칼슘의 농도비가 2:1일 때 결정핵이 생성됨을 확인하였고 핵 생성 이후의 결정 성장 과정을 촬영하여 결정형태의 변화를 관찰하였다. 아스파르트산의 첨가 시에 결정핵 생성과 성장을 저해하며 전체 결정형태 중 베터라이트의 비율이 높아짐을 보였다.

Crystallization of $CaCO_3$ is practiced on a polymethylsiloxane (PDMS) - based microfluidic system. Liquid- liquid reaction was investigated by mixing calcium chloride ($CaCl_2$) and sodium carbonate ($Na_2CO_3$) solution to crystallize $CaCO_3$. Aspartic acid (Asp) was added to investigate the morphology change such as vaterite and calcite. Suitable ratio of $Na_2CO_3$ and $CaCl_2$ was searched for initial seed formation. Christmas tree model was used as microfluidic device to form concentration gradient of $Na_2CO_3$ and $CaCl_2$. After observing microfluidic channel by using optical microscope, we found that seeds of $CaCO_3$ were formed under the condition that the ratio of $Na_2CO_3$ and $CaCl_2$ was 2:1. Morphology of crystals were also observed as $CaCO_3$ crystals grow. When Asp was added, vaterite crystal was more frequently found in two morphologies (vaterite and calcite) and seed formation and crystal growth were inhibited.

키워드

참고문헌

  1. Lyu, S. G., Sur. G. S. and Kang, S. H., "A Study of Crystal Shape of the Precipitated Calcium Carbonate Formed in the Emulsion State," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 35(2), 186-191(1997).
  2. Park, J. W., Kim, J. S., Ahn, J. W. and Han, C., "A Study on Characteristics of Precipitated Calcium Carbonate Prepared by the Nozzle Spouting Method," J. Korean Ind. Eng. Chem., 17(1), 67-72(2006).
  3. Han, Y. S., Hadiko, G., Fuji, M. and Takahashi, M., "Crystallization and Transformation of Vaterite at Controlled pH," Cryst. Growth, 289, 269-274(2006). https://doi.org/10.1016/j.jcrysgro.2005.11.011
  4. Carmona, J. G., Morales, J. G. and Clemente, R. R., "Rhombohedralscalenohedral Calcite Transition Produced by Adjusting the Solution Electrical Conductivity in the System $Ca(OH)_{2}-CO_{2}-H_{2}O$," J. Colloid and Interface Sci., 261, 434-440(2003). https://doi.org/10.1016/S0021-9797(03)00149-8
  5. Han, H. K., Kim, B. M. and Kim, J. A., "Influence of Temperature and PAA(PolyAcrylic Acid) Solution in the Formation of Calcium Carbonate Crystal," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(6), 1052-1056(2008).
  6. Altay, E., Shahwan, T. and Tanoglu, M., "Morphosynthesis of $CaCO_{3}$ at Different Reaction Temperatures and the Effects of PDDA, CTAB, and EDTA on the Particle Morphology and Polymorph Stability," Powder Technol., 178, 194-202(2007). https://doi.org/10.1016/j.powtec.2007.05.004
  7. Hou, W. and Feng, Q., "A Simple Method to Control the Polymorphs of Calcium Carbonate in $CO_{2}$-diffusion Precipitation," J. Cryst. Growth, 282, 214-219(2005). https://doi.org/10.1016/j.jcrysgro.2005.04.102
  8. Manolia, F., Kanakisa, J., Malkajb, P. and Dalasa, E., "The Effect of Aminoacids on the Crystal Growth of Calcium Carbonate," J. Cryst. Growth, 236, 363-370(2002). https://doi.org/10.1016/S0022-0248(01)02164-9
  9. Lyu, S. G., Park, N. K., Sur, G. S. and Lee, T. J., "Influence of Polymorphs of Calcium Carbonate on Their Reactivity with $H_{2}S$," J. Korean Ind. Eng. Chem., 12(2), 174-180(2001).
  10. Song, S. M. and Kim, I. H., "Biomineralization of Calcium Carbonate by Adding Aspartic Acid and Lysozyme," Korean J. Chem. Eng., 28(8), 1749-1753(2011). https://doi.org/10.1007/s11814-011-0022-8
  11. Jung, W. M., Kang, S. H., Kim, W. S. and Choi, C. K., "Particle Morphology of Calcium Carbonate Precipitated by Gas Liquid Reaction in a Couette Taylor Reactor," Chem. Eng. Sci., 55, 733-747 (2000). https://doi.org/10.1016/S0009-2509(99)00395-4
  12. Song, S. M., Seong, B. I., Koo, J. H. and Kim, I. H., "Effect of Aspartic Acid and Lysine on Polymorphism of Calcium Carbonate Crystal Formed by Gas-Liquid Reaction," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49(1), pp. 109-113(2011). https://doi.org/10.9713/kcer.2011.49.1.109
  13. Kim, J. H., Kim, J. M., Kim, W. S. and Kim, I. H., "Polymorphism of Calcium Carbonate Crystal by Addition of Various Amino Acids," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 47(2), 213-219(2009).
  14. Hwang, D. J., Cho, K. H., Choi, M. K., Yu, Y. H., Lee, S. K., Ahn, J. W., Lim, G. I., Han, C. and Lee, J. D., "Effects of Sodium Dodecyl Benzenesulfonic Acid (SDBS) on the Morphologyand the Crystal Phase of $CaCO_{3}$," Korean J. Chem. Eng., 28(9), 1927- 1935(2011). https://doi.org/10.1007/s11814-011-0044-2
  15. Naka, K. (ed), "Biomineralization I," Springer, New York(2007).
  16. Addadi, L. and Weiner, S., "Interactions Between Acidic Proteins and Crystals: Stereochemical Requirements in Biomineralization," Proc. Natl. Acad. Sci. USA, 82, 4110-4114(1985). https://doi.org/10.1073/pnas.82.12.4110
  17. Kim, J. H., Kim, J. M., Kim, W. S. and Kim, I. H., "Polymorphism of Calcium Carbonate Crystal by Silk Digested Amino Acid," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 46(6), 1107-1112(2008).
  18. Yin, H., Ji, B., Dobson, P. S., Mosbahi, K., Glidle, A., Gadegaard, N., Freer, A., Cooper, J. M. and Cusack, M., "Screening of Biomineralization Using Microfluidics," Anal. Chem., 81(1), 473-478(2009). https://doi.org/10.1021/ac801980b
  19. Jung, J. H. and Lee, C. S., "Droplet Based Microfluidic System," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(5), 545- 555(2010).
  20. Revzin, A., Tompkins, R. G. and Toner, M., "Surface Engineering with Poly(ethylene glycol) Photolithography to Create High-Density Cell Arrays on Glass," Langmuir, 19(23), 9855-9862(2003). https://doi.org/10.1021/la035129b
  21. Xia, Y. and Whitesides, G. M., "Soft Lithography," Angew. Chem. Int. Ed., 37, 550-575(1998). https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  22. Jo, B. H., Van Lerberghe, L. M., Motsegood, K. M. and Beebe, D. J., "Three-Dimensional Micro-Channel Fabrication in Polydimethylsiloxane (PDMS) Elastomer," J. Microelectromech. Syst., 9(1), 76-81(2000). https://doi.org/10.1109/84.825780
  23. Dertinger, S. K. W., Chiu, D. T., Jeon, N. L. and Whitesides, G. M., "Generation of Gradients Having Complex Shapes Using Microfluidic Networks," Anal. Chem., 73(6), 1240-1246(2001). https://doi.org/10.1021/ac001132d
  24. Desiraju, G. R., Vittal, J. J. and Ramanan, A., "Crystal Engineering," World Scientific(2011).

피인용 문헌

  1. Lysozyme Crystallization in Droplet-based Microfluidic Device vol.51, pp.6, 2013, https://doi.org/10.9713/kcer.2013.51.6.760
  2. Microfluidic Control of Nucleation and Growth of CaCO3 vol.18, pp.8, 2018, https://doi.org/10.1021/acs.cgd.8b00508