DOI QR코드

DOI QR Code

Production of Reducing Sugar from Macroalgae Saccharina japonica Using Ionic Liquid Catalyst

이온성 액체 촉매를 이용한 해조류 다시마로부터 환원당 생산

  • Park, Don-Hee (Department of Biotechnology and Bioengineering, Interdisciplinary Program of Graduate School for Bioenergy and Biomaterials, Chonnam National University) ;
  • Jeong, Gwi-Taek (Department of Biotechnology, Pukyong National University)
  • 박돈희 (전남대학교 생물공학과, 바이오에너지 및 소재 협동과정) ;
  • 정귀택 (부경대학교 생물공학과)
  • Received : 2012.09.05
  • Accepted : 2012.10.17
  • Published : 2013.02.01

Abstract

In this work, we investigated 20 kinds of ionic liquids as catalyst during the hydrolysis of Saccharina japonica. Three kinds of ionic liquid, 1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, and n-methylmorpholine [$HSO_4$], are selected, and then investigated the effect of reaction temperature, catalyst amount and reaction time. The hydrolysis of S. japonica was increased by the increasing of reaction temperature and ionic liquid amount. Also, the hydrolysis presented the linear increase by the increasing of reaction time. After 90 min of reaction, the concentrations of reducing sugar of 1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, and n-methylmorpholine [$HSO_4$] are reached to 6.2 g/L, 6.4 g/L and 6.0 g/L, respectively. As an overall result, we obtained the possibility of hydrolysis of marine biomass using ionic liquids.

거대 해조류인 다시마의 가수분해에 적합한 이온성 액체를 선정하기 위하여 20종의 이온성 액체를 실험에 사용하였다. 이 중 환원당의 생성능이 우수하다고 판단되는 3종의 이온성 액체 촉매(1-ethyl-3-methylimidazolium tetrafluoroborate, n-butyl-4-methylpyridinium tetrafluoroborate, n-methylmorpholine [$HSO_4$])를 선정하였다. 이들 이온성 액체를 대상으로 반응온도, 촉매량, 반응시간에 따른 영향을 조사하였다. 3종의 이온성 액체 촉매 모두에서 반응온도가 $121^{\circ}C$가 되어야 다시마의 가수분해가 일어나는 것으로 확인되었다. 3종의 모든 이온성 액체 촉매에서 반응시간이 지남에 따라 선형적으로 증가되는 경향을 보였다. 1-Ethyl-3-methylimidazolium tetrafluoroborate를 촉매로 사용한 경우에서는 90분에는 약 6.2 g/L, n-butyl-4-methylpyridinium tetrafluoroborate는 6.4 g/L, n-methylmorpholine [$HSO_4$]는 6.0 g/L의 환원당을 얻을 수 있었다. 이로부터 이온성 액체를 촉매로 이용하여 해조류로부터 당의 생산가능성을 확인하였다.

Keywords

References

  1. Song, B. B., Kim, S. K. and Jeong, G. T., "Enzymatic Hydrolysis of Marine Algae Hizikia fusiforme," KSBB J., 26, 347-35 (2011). https://doi.org/10.7841/ksbbj.2011.26.4.347
  2. Yeon, J. H., Seo, H. B., Oh, S. H., Choi,W. S., Kang, D. H., Lee, H. Y. and Jung, K. H., "Bioethanol Production from Hydrolysate of Seaweed Sargassum sagamianum," KSBB J., 25, 283-288(2010).
  3. Lee, S. J., Go, S., Jeong, G. T. and Kim, S. K., "Oil Production from Five Marine Microalgae for the Production of Biodiesel," Biotechnol. Bioprocess Eng., 16, 561-566(2011). https://doi.org/10.1007/s12257-010-0360-0
  4. Lee, S. M., Choi, I. S., Kim, S. K. and Lee, J. H., "Production of Bio-ethanol from Brown Algae by Emzymic Hydrolysis," KSBB J., 24, 483-488(2009).
  5. Jeong, G. T. and Park, D. H., "Production of Levulinic Acid from Marine Algae Codium fragile Using Acid-hydrolysis and Response Surface Methodology," KSBB J., 26, 341-346(2011). https://doi.org/10.7841/ksbbj.2011.26.4.341
  6. Faaij, A. P. C., "Developments in International Bioenergy Markets and Trade," Biomass Bioenerg., 32, 657-659(2008). https://doi.org/10.1016/j.biombioe.2008.02.008
  7. Demibras, A., "Progress and Recent Trends in Biofuels," Prog. Energ. Combust., 33, 1-18(2007). https://doi.org/10.1016/j.pecs.2006.06.001
  8. Jeong, G. T., Park, J. H., Park, S. H. and Park, D. H., "Performance of Pilot-scale Biodiesel Production System," KSBB J., 24, 89-95(2009).
  9. Jeong, G. T. and Park, D. H., "Production of Sugars and Levulinic Acid from Marine Biomass Gelidium amansii," Appl. Biochem. Biotechnol., 161, 41-52(2010). https://doi.org/10.1007/s12010-009-8795-5
  10. Lee, S. B., Cho, S. J., Lee, S. Y., Paek, K. H., Kim, J. A. and Chang, J. H., "Present Status and Prospects of Marine Chemical Bioindustries," KSBB J., 24, 495-507(2009).
  11. Meinita, M. D. N., Hong, Y. K. and Jeong, G. T., "Comparison of Sulfuric and Hydrochloric Acids as Catalysts in Hydrolysis of Kappaphycus alvarezii (cottonii)," Bioprocess Biosyst. Eng., 35, 123-128(2012). https://doi.org/10.1007/s00449-011-0609-9
  12. Meinita, M. D. N., Hong, Y. K. and Jeong, G. T., "Detoxification of Acidic Catalyzed Hydrolysate of Kappaphycus alvarezii (cottonii)," Bioprocess Biosyst. Eng., 35, 93-98(2012). https://doi.org/10.1007/s00449-011-0608-x
  13. Jang, J. S., Cho, Y., Jeong, G. T. and Kim, S. K., "Optimization of Saccharification and Ethanol Production by Simultaneous Saccharification and Fermentation (SSF) from Seaweed, Saccharina japonica," Bioprocess Biosyst. Eng., 35, 11-18(2012). https://doi.org/10.1007/s00449-011-0611-2
  14. Lee, S. M., Kim, J. H., Cho,H. Y., Joo, H. and Lee, J. H., "Production of Bio-ethanol from Brown Algae by Physicochemical Hydrolysis," J. Korean Ind. Eng. Chem., 20, 517-521(2009).
  15. Kim, J. K., "Pretreatment and Enzymatic Hydrolysis of Ulva pertusa Kjellman," M.S. Thesis, Inha University, Incheon, Korea (2010).
  16. Choi, D., Sim, H. S., Piao, Y. L., Ying, W. and Cho, H., "Sugar Production from Raw Seaweed Using the Enzyme Method," J. Ind. Eng. Chem., 15, 12-15(2009). https://doi.org/10.1016/j.jiec.2008.08.004
  17. Lee, H., Lee, J. S. and Kim, H. S., "Application of Ionic Liquids: The State of Arts," Appl. Chem. Eng., 21(2), 129-136(2010).
  18. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D., "Determination of Structural Carbohydrates and Lignin," in Biomass Laboratory Analytical Procedure (LAP), Technical Report NREL/TP-510-42618(2008).
  19. Zhou, N., Zhang, Y., Gong, X., Wang, Q. and Ma, Y., "Ionic Liquids- based Hydrolysis of Chlorella Biomass for Fermentable Sugars," Bioresour. Technol., 118, 512-517(2012). https://doi.org/10.1016/j.biortech.2012.05.074

Cited by

  1. Effect of Reaction Factors on Reducing Sugar Production from Enteromorpha intestinalis Using Solid Acid Catalyst vol.53, pp.4, 2015, https://doi.org/10.9713/kcer.2015.53.4.478
  2. Macroalgal biomass hydrolysis using dicationic acidic ionic liquids vol.92, pp.6, 2017, https://doi.org/10.1002/jctb.5123
  3. Optimization of Alkail Extraction for Production of Protein Concentrates from Lipid Extracted Algae vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.286
  4. 해조류 파래로부터 지질 추출에 미치는 전처리 방법의 영향 vol.29, pp.1, 2013, https://doi.org/10.7841/ksbbj.2014.29.1.22
  5. 해조류 Pulp 분리방법 및 응용연구 vol.32, pp.4, 2013, https://doi.org/10.12925/jkocs.2015.32.4.685
  6. 창자파래로부터 citrate buffer를 이용한 전처리와 효소가수분해를 통한 환원당 생산 vol.54, pp.1, 2013, https://doi.org/10.9713/kcer.2015.54.1.70