DOI QR코드

DOI QR Code

Decomposition of Paraoxon and Parathion by Amines, HOO- and OH- Ions: Reaction Mechanism and Origin of the α-Effect

  • Bae, Ae-Ri (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Lee, Jieun (Gocheok High School) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • 투고 : 2012.08.19
  • 심사 : 2012.10.30
  • 발행 : 2013.01.20

초록

The second-order rate constants have been measured spectrophotometrically for the reactions of paraoxon 1 and parathion 2 with a series of alicyclic secondary amines, $OH^-$ and $HOO^-$ ions in $H_2O$ at $25.0{\pm}0.1^{\circ}C$. A linear Br${\o}$nsted-type plot with ${\beta}_{nuc}$ = 0.40 was obtained for the reactions of 1 with amines and $OH^-$. The reaction has been concluded to proceed through a concerted mechanism. $HOO^-$ deviates positively from the linear Br${\o}$nsted-type plot, implying that the ${\alpha}$-effect is operative. The magnitude of the ${\alpha}$-effect ($k_{HOO^-}/k_{OH^-}$) was found to be ca. 55 for the reaction of 1 and 290 for that of parathion 2, indicating that $HOO^-$ is highly effective in decomposition of the toxic phosphorus compounds although it is over 4 $pK_a$ units less basic than $OH^-$. Among the theories suggested as origins of the ${\alpha}$-effect (e.g., TS stabilization through an intramolecular Hbonding interaction, solvent effect, and polarizability effect), polarizability effect appears to be the most important factor for the ${\alpha}$-effect in this study, since the polarizable $HOO^-$ exhibits a larger ${\alpha}$-effect for the reaction of the more polarizable substrate 2.

키워드

참고문헌

  1. Quin, L. D. A Guide to Organophosphorus Chemistry; Willey: New York, 2000.
  2. Wu, T. G.; Qiu, J. U. Environ. Sci. Tech. 2006, 40, 5428. https://doi.org/10.1021/es060711i
  3. Eyer, P. Toxicol. Rev. 2003, 22, 165. https://doi.org/10.2165/00139709-200322030-00004
  4. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61. https://doi.org/10.2174/1385272053369349
  5. Rawlings, I.; Cleland, W. W.; Hengge, A. C. J. Am. Chem. Soc. 2006, 128, 17120. https://doi.org/10.1021/ja065931a
  6. Onyido, I.; Swierzek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703. https://doi.org/10.1021/ja0501565
  7. Buncel, E.; Um, I. H.; Terrier, F. The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids; Wiley Press: West Sussex, 2009; Chapter 17.
  8. Buncel, E.; Um, I. H. Tetrahedron Lett. 2004, 60, 7801. https://doi.org/10.1016/j.tet.2004.05.006
  9. Hoz, S.; Buncel, E. Isr. J. Chem. 1985, 26, 313.
  10. Grekov, A. P.; Beselov, V. Ya. Russ. Chem. Rev. 1978, 47, 631. https://doi.org/10.1070/RC1978v047n07ABEH002243
  11. Fina, N. J.; Edwards, J. O. Int. J. Chem. Kinet. 1973, 5, 1. https://doi.org/10.1002/kin.550050102
  12. Stairs, R. A.; Buncel, E. Can. J. Chem. 2006, 84, 1580. https://doi.org/10.1139/v06-160
  13. Han, X.; Balakrishnan, V. K.; VanLoon, G. W.; Buncel, E. Langmuir 2006, 22, 9009. https://doi.org/10.1021/la060641t
  14. Churchill, D.; Cheung, J. C. F.; Park, Y. S.; Smith, V. H.; VanLoon, G. W.; Buncel, E. Can. J. Chem. 2006, 84, 702. https://doi.org/10.1139/v06-053
  15. Balakrishnan, V. K.; Buncel, E.; van Loon, G. W. Environ. Sci. Tech. 2005, 39, 5824. https://doi.org/10.1021/es050234o
  16. Buncel, E.; Albright, K. G.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601. https://doi.org/10.1039/b314886f
  17. Nagelkerke, R.; Thatcher, G. R. J.; Buncel, E. Org. Biomol. Chem. 2003, 1, 163. https://doi.org/10.1039/b208408b
  18. Buncel, E.; Nagelkerke, R.; Thatcher, G. R. J. Can. J. Chem. 2003, 81, 53. https://doi.org/10.1139/v02-202
  19. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016.
  20. Terrier, F.; Rodriguez-Dafonte, P.; Le Guevel, E.; Moutiers, G. Org. Biomol. Chem. 2006, 4, 4352. https://doi.org/10.1039/b609658c
  21. Terrier, F.; Le Guevel, E.; Chartrousse, A. P.; Moutiers, G.; Buncel, E. Chem. Commun. 2003, 600.
  22. Cleland, W. W.; Hengge, A. C. Chem. Rev. 2006, 106, 3252. https://doi.org/10.1021/cr050287o
  23. Zalatan, J. G.; Herschlag, D. J. Am. Chem. Soc. 2006, 128, 1293. https://doi.org/10.1021/ja056528r
  24. Um, I. H.; Shin, Y. H.; Park, J. E.; Kang, J. S.; Buncel, E. Chem. Eur. J. 2012, 18, 961. https://doi.org/10.1002/chem.201102404
  25. Um, I. H.; Shin, Y. H.; Lee, S. E.; Yang, K. Y.; Buncel, E. J. Org. Chem. 2008, 73, 923. https://doi.org/10.1021/jo702138h
  26. Zalatan, J.; Herschlag, D. J. Am. Chem. Soc. 2006, 128, 1293. https://doi.org/10.1021/ja056528r
  27. O'Brien, P. J.; Herschlag, D. Biochemistry 2001, 40, 5691. https://doi.org/10.1021/bi0028892
  28. Gibson, G. T. T.; Neverov, A. A.; Teng, A. C. T.; Brown, R. S. Can. J. Chem. 2005, 83, 1268. https://doi.org/10.1139/v05-065
  29. Tsang, J. S.; Neverov, A. A.; Brown, R. S. J. Am. Chem. Soc. 2003, 125, 1559. https://doi.org/10.1021/ja021176z
  30. Cook, R. D.; Rahhal-Arabi, L. Tetrahedron Lett. 1985, 26, 3147. https://doi.org/10.1016/S0040-4039(00)98642-8
  31. Haake, P.; McCoy, D. R.; Okamura, W.; Alpha, S. R.; Wong, S. W.; Tyssee, D. A.; McNeal, J. P.; Cook, R. D. Tetrahedron Lett. 1968, 5243.
  32. Cook, R. D.; Daouk, W. A.; Hajj, A. N.; Kabbani, A.; Kurku, A.; Samaha, M.; Shayban, F.; Tanielian, O. V. Can. J. Chem. 1986, 64, 213.
  33. Williams, A.; Naylor, R. A., J. Chem. Soc. (B) Phys. Org. 1971, 1967.
  34. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890. https://doi.org/10.1021/ja00214a037
  35. Um, I. H.; Han, J. Y.; Shin, Y. H. J. Org. Chem. 2009, 74, 3073. https://doi.org/10.1021/jo900219t
  36. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823. https://doi.org/10.1021/jo070171n
  37. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715. https://doi.org/10.1021/jo061308x
  38. Castro, E. A.; Ugarte, D.; Rojas, M. F.; Pavez, P.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 708. https://doi.org/10.1002/kin.20605
  39. Issacs, N. S. Physical Organic Chemistry, 2nd Ed.; Longman Scientific and Technical: Singapore, 1995.
  40. Jencks, W. P.; Regenstein, F. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed., The Chemical Rubber Co.: Cleveland, OH, 1968.
  41. Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 3rd Ed.; Harper Collins Publishers: New York, 1987; Chapt. 2.
  42. Um, I. H.; Im, L. R.; Buncel, E. J. Org. Chem. 2010, 75, 8571. https://doi.org/10.1021/jo101978x
  43. Jencks, W. P. J. Am. Chem. Soc. 1985, 80, 4585.
  44. Epstein, J.; Demek, M. M.; Rosenblatt, D. H. J. Org. Chem. 1956, 21, 796. https://doi.org/10.1021/jo01113a600
  45. Um, I. H.; Chung, E. K.; Lee, S. M. Can. J. Chem. 1998, 76, 729.
  46. Um, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530. https://doi.org/10.1021/jo050624t
  47. Ritchie, J. F. J. Am. Chem. Soc. 1983, 105, 7313. https://doi.org/10.1021/ja00363a018
  48. Jencks, W. P. Catalysis in Chemistry and Enzymology; McGraw- Hill: New York, 1972; p 107.
  49. Jencks, W. P.; Carriuolo, J. J. Am. Chem. Soc. 1960, 82, 1778. https://doi.org/10.1021/ja01492a058
  50. Bell, R. P. The Proton in Chemistry; Methuen: London, 1959; p 159.

피인용 문헌

  1. -4-Nitrophenyl Phenylphosphonothioate with Alkali-Metal Ethoxides vol.86, pp.6, 2013, https://doi.org/10.1246/bcsj.20130015
  2. Cytotoxic effects of parathion, paraoxon, and their methylated derivatives on a mouse neuroblastoma cell line NB41A3 vol.6, pp.2, 2013, https://doi.org/10.2131/fts.6.45
  3. Puzzling Reaction of Imidazole with Methyl Parathion: P=S versus P=O Mechanistic Shift Dilemma in Organophosphates vol.25, pp.3, 2013, https://doi.org/10.1002/chem.201804107