DOI QR코드

DOI QR Code

Efficient Cleavage of Alkyl Aryl Ethers Using an Ionic Liquid under Microwave Irradiation

  • Park, Se Kyung (Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women's University) ;
  • Battsengel, Oyunsaikhan (Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women's University) ;
  • Chae, Junghyun (Department of Chemistry and Research Institute of Basic Sciences, Sungshin Women's University)
  • Received : 2012.10.09
  • Accepted : 2012.10.27
  • Published : 2013.01.20

Abstract

A highly reliable dealkylation protocol of alkyl aryl ethers, whose alkyl groups are longer than methyl group, has been developed. We report that various ethyl, n-propyl, and benzyl aryl ethers are successfully cleaved using an ionic liquid, 1-n-butyl-3-methylimidazolium bromide, [bmim][Br], under microwave irradiation. Despite many characteristics such as lower cost and less toxicity of the alkylating agents, and greater hydrophobicity of the products, longer alkyl ethers have been significantly less exploited than methyl ethers, probably due to more difficulty in the deprotection step. Since it has the same advantages as the demethylation method developed by this group including mild conditions, short reaction time, and small use of the ionic liquids, the dealkylation protocol can greatly encourage the broader use of longer alkyl groups in the protection of phenolic groups. As with our previous study of demethylation using [bmim][Br], the microwave irradiation is crucial for the deprotection of longer alkyl aryl ethers. Unlike the conventional heating, which causes either low conversion or decomposition, the microwave irradiation seems to more effectively provide energy to cleave the ether bonds and therefore suppresses the undesired reactions.

Keywords

References

  1. Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, 4th Ed.; Wiley: 2006.
  2. Kocienski, P. J. Protecting Groups, 3rd Ed.; Georg Thieme Verlag: 2005.
  3. Parker, K. A.; Petraitis, J. J. Tetrahedron Lett. 1981, 22, 397. https://doi.org/10.1016/0040-4039(81)80109-8
  4. Li, T.; Wu, Y. L. J. Am. Chem. Soc. 1981, 103, 7007. https://doi.org/10.1021/ja00413a059
  5. Jung, M. E.; Lyster, M. A. J. Org. Chem. 1977, 42, 3761. https://doi.org/10.1021/jo00443a033
  6. McOmie, J. F. W.; West, D. E. Org. Synth. Collect. Vol. V 1973, 412.
  7. Kawasaki, I.; Matsuda, K.; Kaneko, T. Bull. Chem. Soc. Jpn. 1971, 44, 1986. https://doi.org/10.1246/bcsj.44.1986
  8. Bernard, A. M.; Ghiani, M. R.; Piras, P. P.; Rivoldini, A. Synthesis 1989, 287.
  9. Kende, A. S.; Rizzi, J. P. Tetrahedron Lett. 1981, 22, 1779. https://doi.org/10.1016/S0040-4039(01)90437-X
  10. McCarthy, J. R.; Moore, J. L.; Crege, R. J. Tetrahedron Lett. 1978, 5, 183.
  11. Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380. https://doi.org/10.1021/ja01588a033
  12. Sulikowski, G. A.; Sulikowski, M. M.; Haukaas, M. H.; Moon, B. e-EROS, Iodomethane, 2005, DOI:10.1002/047084289X.ri029m.pub2.
  13. Merriman, G. e-EROS, Dimethyl Sulfate, 2001, DOI: 10.1002/047084289X.rd369.
  14. Patnaik, P. A Comprehensive Guide to the Hazardous Properties of Chemical Substances; Wiley, 2007.
  15. Pohanish, R. P. Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens, 6th Ed.; William Andrew, 2011.
  16. Park, J.; Chae, J. Synlett 2010, 1651.
  17. Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123. https://doi.org/10.1039/b006677j
  18. Carlos, K. Z. A.; Luana, M. A. Curr. Org. Chem. 2005, 9, 195. https://doi.org/10.2174/1385272053369178
  19. Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772. https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
  20. Olivier-Bourbigou, H.; Magna, L. J. Mol. Catal. A: Chem. 2002, 182-183, 419. https://doi.org/10.1016/S1381-1169(01)00465-4
  21. Lancaster, N. L.; Salter, P. A.; Welton, T.; Young, G. B. J. Org. Chem. 2002, 67, 8855. https://doi.org/10.1021/jo026113d
  22. Lancaster, N. L.; Welton, T. J. Org. Chem. 2004, 69, 5986. https://doi.org/10.1021/jo049636p
  23. Lancaster, N. L.; Welton, T.; Young, G. B. J. Chem. Soc., Perkin Trans. 2 2001, 2267.
  24. Cheng, L.; Aw, C.; Ong, S. S.; Lu, X. Bull. Chem. Soc. Jpn. 2007, 80, 2008. https://doi.org/10.1246/bcsj.80.2008
  25. Gates, M.; Tschudi, G. J. Am. Chem. Soc. 1956, 78, 1380. https://doi.org/10.1021/ja01588a033
  26. Boovanahalli, S. K.; Kim, D. W.; Chi, D. Y. J. Org. Chem. 2004, 69, 3340. https://doi.org/10.1021/jo035886e
  27. Kappe, C. O.; Dallinger, D.; Murphree, S. S. Practical Microwave Synthesis for Organic Chemists; Wiley-VCH: 2009.
  28. Hayes, B. L. Microwave Synthesis-Chemistry at the Speed of Light; CEM publishing: 2002.

Cited by

  1. ChemInform Abstract: Efficient Cleavage of Alkyl Aryl Ethers Using an Ionic Liquid under Microwave Irradiation. vol.44, pp.39, 2013, https://doi.org/10.1002/chin.201339067
  2. Imidazolium-Based Ionic Liquids as Efficient Reagents for the C−O Bond Cleavage of Lignin vol.11, pp.2, 2018, https://doi.org/10.1002/cssc.201701668
  3. Bromide-Based Ionic Liquid Treatment of Hardwood Organosolv Lignin Yielded a More Reactive Biobased Polyol vol.59, pp.42, 2020, https://doi.org/10.1021/acs.iecr.0c03718