DOI QR코드

DOI QR Code

A Novel Method for Synthesis of Bis(indolyl)methanes Using 1,3-Dibromo-5,5-dimethylhydantoin as a Highly Efficient Catalyst Under Solvent-free Conditions

  • Received : 2012.05.01
  • Accepted : 2012.10.14
  • Published : 2013.01.20

Abstract

The reactions of indole with carbonyl groups have been efficiently carried out in the presence of catalytic amounts of 1,3-dibromo-5,5-dimethylhydantoin under solvent-free conditions and corresponding bis(indolyl)-mathanes were obtained in good to excellent yields. Synthesis of di[bis(indolyl)methyl]benzene was also accomplished by this catalyst. Furthermore, chemoselective conversion of aromatic aldehydes to their corresponding bis(indolyl)methanes in the presence of aliphatic aldehydes or ketones was achieved by this method.

Keywords

References

  1. Sundberg, R. J. The Chemistry of Indole; Academic Press: New York, 1996; p 113.
  2. Bell, R.; Carmeli, S.; Sar, N.; Vibrindole, A. J. Nat. Prod. 1994, 57, 1587. https://doi.org/10.1021/np50113a022
  3. Hong, C.; Firestone, G. L.; Bjeldance, L. F. Biochem. Pharmacol. 2002, 63, 1085. https://doi.org/10.1016/S0006-2952(02)00856-0
  4. Povszsz, L.; Katakin, G. P.; Foleat, S.; Malkovics, B. Acta Phys. Acad. Sci. Hung 1996, 29, 299.
  5. Zeligs, M.-A. J. Med. Food 1998, 1, 67. https://doi.org/10.1089/jmf.1998.1.67
  6. Pasha, M. A.; Jayashankara, V. P. J. Pharmacol. Toxicol. 2006, 1, 585. https://doi.org/10.3923/jpt.2006.585.590
  7. Ramesh, C.; Banerjee, J.; Pal, R.; Das, B. Adv. Synth. Catal. 2003, 345, 557. https://doi.org/10.1002/adsc.200303022
  8. Zahran, M.; Abdin, Y.; Salama, H. Arkivok 2008, xi, 256.
  9. Chen, D.-P.; Yu, L.-B.; Wang, P.-G. Tetrahedron Lett. 1996, 37, 4467. https://doi.org/10.1016/0040-4039(96)00958-6
  10. Kundu, P.; Maiti, G. Indian J. Chem. 2008, 47B, 1402.
  11. Qu, H.-E.; Xiao, C.; Wang, N.; Yu, K.-H.; Hu, Q.-S.; Liu, L.-X. Molecules 2011, 16, 3855. https://doi.org/10.3390/molecules16053855
  12. Firouzabadi, H.; Iranpoor, N.; Jafari, A. A. J. Mol. Catal. A: Chemical 2006, 244, 168. https://doi.org/10.1016/j.molcata.2005.09.005
  13. Veisi, H.; Hemmati, S.; Veisi, H. J. Chin. Chem. Soc. 2009, 56, 240.
  14. Kolvari, E.; Ghorbani-Choghamarani, A.; Salehi, P.; Shirini, F.; Zolfigol, M. A. J. Iranian Chem. Soc. 2007, 4, 126. https://doi.org/10.1007/BF03245963
  15. Hojati, S. F.; Mohammadpoor-Baltork, I.; Maleki, B.; Gholizadeh, M.; Shafiezadeh, F.; Haghdoust, M. Can. J. Chem. 2010, 88, 135. https://doi.org/10.1139/V09-144
  16. Hojati, S. F.; Gholizadeh, M.; Haghdoust, M.; Shafiezadeh, F. Bull. Korean Chem. Soc. 2010, 31, 3238. https://doi.org/10.5012/bkcs.2010.31.11.3238
  17. Hojati, S. F.; Maleki, B.; Beykzadeh, Z. Monatsh. Chem. 2011, 142, 87. https://doi.org/10.1007/s00706-010-0412-3
  18. Maleki, B.; Azarifar, D.; Ghorbani-Vaghei, R.; Veisi, H.; Hojati, S. F.; Gholizadeh, M.; Salehabadi, H.; Khodaverdian Moghadam, M. Monatsh. Chem. 2009, 140, 1485. https://doi.org/10.1007/s00706-009-0212-9
  19. Mi, X.; Luo, S.; He, J.; Cheng, J.-P. Tetrahedron Lett. 2004, 45, 4567. https://doi.org/10.1016/j.tetlet.2004.04.039
  20. Hosseini-Sarvari, M. Acta Chim Slov. 2007, 54, 354.
  21. Hasaninejad, A.; Zare, A.; Sharghi, H.; Niknam, K.; Shelouhy, M. Arkivoc 2007, xiv, 39.
  22. Bandgar, B. P.; Patil, A. V.; Kamble, V. T. Arkivoc 2007, xiv, 252.
  23. Nagarajan, R.; Perumal, P. T. Tetrahedron 2002, 58, 1229. https://doi.org/10.1016/S0040-4020(01)01227-3
  24. Chen, D.; Yu, L.; Wang, P. G. Tetrahedron Lett. 1996, 37, 4467. https://doi.org/10.1016/0040-4039(96)00958-6

Cited by

  1. ChemInform Abstract: A Novel Method for Synthesis of Bis(indolyl)methanes Using 1,3-Dibromo-5,5-dimethylhydantoin as a Highly Efficient Catalyst under Solvent-Free Conditions. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340113
  2. A domino electro-oxidative synthesis of 3,3′-bis(indolyl)methane nanoparticles vol.146, pp.12, 2015, https://doi.org/10.1007/s00706-015-1496-6
  3. -benzothiazoles vol.64, pp.7, 2017, https://doi.org/10.1002/jccs.201700035
  4. Synthesis of Novel UV Absorbers Bisindolylmethanes and Investigation of Their Applications on Cotton-Based Textile Materials vol.21, pp.6, 2016, https://doi.org/10.3390/molecules21060718
  5. @Sucrose nanoparticles as a highly-efficient acid catalyst for syntheses of Dihydroquinazolinones (DHQZs) and Bis 3-Indolyl Methanes (BIMs) vol.32, pp.8, 2018, https://doi.org/10.1002/aoc.4431
  6. An efficient method for synthesis of bis(indolyl)methane and di-bis(indolyl)methane derivatives in environmentally benign conditions using TBAHS vol.2, pp.1, 2013, https://doi.org/10.1080/23312009.2016.1188435
  7. Efficient and Green Synthesis of Bis(indolyl)Methanes using Thiamine Hydrochloride as an Organocatalyst: A Parallel Scrutiny of Microwave Irradiation versus Ultrasonicator Heating in Water vol.17, pp.None, 2013, https://doi.org/10.2174/1570179417666200620215101
  8. 3‐Amino‐5‐mercapto‐1,2,4‐triazole‐functionalized Fe3O4 magnetic nanocomposite as a green and efficient catalyst for synthesis of bis(indolyl)m vol.34, pp.6, 2013, https://doi.org/10.1002/aoc.5641
  9. Bisindolization Reaction Employing Phthalimide-N-sulfonic Acid as an Efficient Catalyst vol.7, pp.2, 2013, https://doi.org/10.2174/2213337206666191022110730
  10. Seralite SRC-120 resin catalyzed synthesis of bis(indolyl)methanes using indoles and low/high boiling point carbonyl compounds under solvent free conditions vol.51, pp.1, 2013, https://doi.org/10.1080/00397911.2020.1849724