DOI QR코드

DOI QR Code

Adipic Acid Assisted Sol-Gel Synthesis of Li1+x(Mn0.4Ni0.4Fe0.2)1-xO2 (0 < x < 0.3) as Cathode Materials for Lithium Ion Batteries

  • Karthikeyan, Kaliyappan (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Amaresh, Samuthirapandian (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Son, Ju-Nam (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Shin-Ho (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Min-Chul (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Kim, Kwang-Jin (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Sol-Nip (Faculty of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Yun-Sung (Faculty of Applied Chemical Engineering, Chonnam National University)
  • Received : 2012.08.27
  • Accepted : 2012.10.05
  • Published : 2013.01.20

Abstract

Layered $Li_{1+x}(Mn_{0.4}Ni_{0.4}Fe_{0.2})_{1-x}O_2$ (0 < x < 0.3) solid solutions were synthesized using solgel method with adipic acid as chelating agent. Structural and electrochemical properties of the prepared powders were examined by means of X-ray diffraction, Scanning electron microscopy and galvanostatic charge/discharge cycling. All powders had a phase-pure layered structure with $R\bar{3}m$ space group. The morphological studies confirmed that the size of the particles increased at higher x content. The charge-discharge profiles of the solid solution against lithium using 1 M $LiPF_6$ in EC/DMC as electrolyte revealed that the discharge capacity increases with increasing lithium content at the 3a sites. Among the cells, $Li_{1.2}(Mn_{0.32}Ni_{0.32}Fe_{0.16})O_2$ (x = 0.2)/$Li^+$ exhibits a good electrochemical property with maximum initial capacity of 160 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ current density and the capacity retention after 25 cycles was 92%. Whereas, the cell fabricated with x = 0.3 sample showed continuous capacity fading due to the formation of spinel like structure during the subsequent cycling. The preparation of solid solutions based on $LiNiO_2-LiFeO_2-Li_2MnO_3$ has improved the properties of its end members.

Keywords

References

  1. Breger, J.; Dupre, N.; Chupas, P. J.; Lee, P. L.; Proffen, T.; Parise, J. B.; Grey, C. P. J. Am. Chem. Soc. 2005, 127, 7529. https://doi.org/10.1021/ja050697u
  2. Guyomard, D.; Tarascon, J. M. Solid-State Ionics 1994, 69, 222. https://doi.org/10.1016/0167-2738(94)90412-X
  3. Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 8, 744.
  4. Ammundsen, B.; Paulsen, J.; Davidson, I.; Liu, R. S.; Shen, C. H.; Chen, J. M.; Jang, L. Y.; Lee, J. F. J. Electrochem. Soc. 2002, 149, A431. https://doi.org/10.1149/1.1456535
  5. Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13, 943. https://doi.org/10.1002/1521-4095(200107)13:12/13<943::AID-ADMA943>3.0.CO;2-J
  6. Padhi, A. K.; Najundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. https://doi.org/10.1149/1.1837571
  7. Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1454. https://doi.org/10.1149/1.1513557
  8. Park, Y. J.; Hong, Y. S.; Wu, X.; Kim, M. G.; Ryu, K. S.; Chang, S. H. J. Electrochem. Soc. 2004, 151, A720. https://doi.org/10.1149/1.1690781
  9. Arunkumar, T. A.; Wu, Y.; Manthiram, A. Chem. Mater. 2007, 19, 3067. https://doi.org/10.1021/cm070389q
  10. Thackeray, M. M.; Kang, S. H.; Johnson, C. S.; Vaughey, J. T.; Benedek, R.; Hackney, S. A. J. Mater. Chem. 2007, 17, 3112. https://doi.org/10.1039/b702425h
  11. Sun, Y. K.; Kim, M. G.; Kang, S. H.; Amine, K. J. Mater. Chem. 2003, 13, 319. https://doi.org/10.1039/b209379k
  12. Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Tatsumi, K.; Imaizumi, J.; Nitta, Y. J. Power Sources 2010, 195, 834. https://doi.org/10.1016/j.jpowsour.2009.08.059
  13. Tabuchi, M.; Nakashima, A.; Shigemura, H.; Ado, K.; Kobayashi, H.; Sakaebe, H.; Kageyama, H.; Kohzaki, M.; Hirano, A.; Kanno, R. J. Electrochem. Soc. 2002, 149, A509. https://doi.org/10.1149/1.1462791
  14. Tabuchi, M.; Nabeshima, Y.; Takeuchi, T.; Kageyama, H.; Tatsumi, K.; Akimoto, J.; Shibuya, H.; Imaizumi, J. J. Power Sources 2011, 196, 3611. https://doi.org/10.1016/j.jpowsour.2010.12.060
  15. Karthikeyan, K.; Amaresh, S.; Lee, G. W.; Aravindan, V.; Kim, H.; Kang, K. S.; Kim, W. S.; Lee, Y. S. Electrochim. Acta 2012, 68, 246. https://doi.org/10.1016/j.electacta.2012.02.076
  16. Kim, J. S.; Johnson, C. S.; Thackeray, M. M. Electrochem. Commun. 2002, 4, 205. https://doi.org/10.1016/S1388-2481(02)00251-5
  17. Shannon, R. D. Acta Crystallogr. A 1976, 32, 751. https://doi.org/10.1107/S0567739476001551
  18. Suryanarayana, C.; Koch, C. C. Hyperfine Interact. 2000, 130, 5.
  19. Koyama, Y.; Tanaka, I.; Adachi, H.; Makimura, Y.; Ohzuku, T. J. Power Sources 2003, 119, 644. https://doi.org/10.1016/S0378-7753(03)00194-0
  20. Lu, Z.; MacNeil, D. D.; Dahn, J. R. Electrochem. Solid State Lett. 2001, 4, A191. https://doi.org/10.1149/1.1407994
  21. Wang, Z.; Sun, Y.; Chen, L.; Huang, X. J. Electrochem. Soc. 2004, 151, A914. https://doi.org/10.1149/1.1740781
  22. Suryanarayana, C. Jom-J. Min. Met. Mat. S. 2002, 54, 24.
  23. Robertson, A. D.; Bruce, P. G. Chem. Mater. 2003, 15, 1984. https://doi.org/10.1021/cm030047u
  24. Kumagai, N.; Kim, J.; Tsuruta, S.; Kadoma, Y.; Ui, K. Electrochim. Acta 2008, 53, 5287. https://doi.org/10.1016/j.electacta.2008.01.044
  25. Reed, J.; Ceder, G. Electrochem. Solid State Lett. 2002, 5, A145. https://doi.org/10.1149/1.1480135
  26. Kim, J.; Fulmer, P.; Manthiram, A. Mater. Res. Bull. 1999, 34, 571. https://doi.org/10.1016/S0025-5408(99)00049-5
  27. Wang, C. W.; Ma, X. L.; Cheng, J. L.; Zhou, L. Q.; Sun, J. T.; Zhou, Y. H. Solid State Ionics 2006, 177, 1027. https://doi.org/10.1016/j.ssi.2006.03.030
  28. Liu, J.; Manthiram, A. Chem. Mater. 2009, 21, 16951.
  29. Suresh, P.; Shukla, A. K.; Munichandraiah, N. Materials Letters 2005, 59, 953. https://doi.org/10.1016/j.matlet.2004.10.072
  30. Shaju, K. M.; Rao, G. V. S.; Chowdari, B. V. R. Electrochim. Acta 2004, 49, 1565. https://doi.org/10.1016/j.electacta.2003.11.018
  31. Aurbach, D.; Schechter, A. Electrochim. Acta 2001, 46, 2395. https://doi.org/10.1016/S0013-4686(01)00428-5
  32. Wu, X. M.; Li, X. H.; Wang, Z.; Xiao, Z. B.; Liu, J.; Yan, W. B. Mater. Chem. Phys. 2004, 83, 78. https://doi.org/10.1016/j.matchemphys.2003.09.029
  33. Park, C. K.; Park, S. B.; Shin, H. C.; Cho, W. I.; Jang, H. Bull. Korean Chem. Soc. 2011, 32, 191. https://doi.org/10.5012/bkcs.2011.32.1.191
  34. Ho, C.; Raistrick, I. D.; Huggins, R. A. J. Electrochem. Soc. 1980, 127, 343. https://doi.org/10.1149/1.2129668

Cited by

  1. Binder- and Carbon-free Porous Thick Tin Foil Electrode via a Spontaneous Electrochemical and Chemical Process vol.37, pp.1, 2015, https://doi.org/10.1002/bkcs.10620
  2. Composite of Li-Rich Mn, Ni and Fe Oxides as Positive Electrode Materials for Li-Ion Battery vol.163, pp.8, 2016, https://doi.org/10.1149/2.0121608jes
  3. In situ generated spinel-phase skin on layered Li-rich short nanorods as cathode materials for lithium-ion batteries vol.54, pp.12, 2013, https://doi.org/10.1007/s10853-019-03425-8