DOI QR코드

DOI QR Code

Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries

  • Yu, Seungho (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Soo (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Tae Young (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Nam, Jin Hyun (School of Mechanical and Automotive Engineering, Daegu University) ;
  • Cho, Won Il (Center for Energy Convergence, Korea Institute of Science and Technology)
  • Received : 2012.08.27
  • Accepted : 2012.10.05
  • Published : 2013.01.20

Abstract

$LiFePO_4$ is a promising active material (AM) suitable for use in high performance lithium-ion batteries used in automotive applications that require high current capabilities and a high degree of safety and reliability. In this study, an optimization of the electrode design parameters was performed to produce high capacity lithium-ion batteries based on $LiFePO_4$/graphite electrodes. The electrode thickness and porosity (AM density) are the two most important design parameters influencing the cell capacity. We quantified the effects of cathode thickness and porosity ($LiFePO_4$ electrode) on cell performance using a detailed one-dimensional electrochemical model. In addition, the effects of those parameters were experimentally studied through various coin cell tests. Based on the numerical and experimental results, the optimal ranges for the electrode thickness and porosity were determined to maximize the cell capacity of the $LiFePO_4$/graphite lithium-ion batteries.

Keywords

References

  1. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid State Lett. 2001, 4, A170. https://doi.org/10.1149/1.1396695
  2. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184. https://doi.org/10.1149/1.1498255
  3. Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517. https://doi.org/10.1016/S0013-4686(01)00631-4
  4. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123. https://doi.org/10.1038/nmat732
  5. Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochim. Acta 2005, 50, 2955. https://doi.org/10.1016/j.electacta.2004.11.045
  6. Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108. https://doi.org/10.1103/PhysRevB.68.195108
  7. Sides, C. R.; Croce, F.; Young, V. Y.; Martion, C. R.; Scrosati, B. Electrochem. Solid-State Lett. 2005, 8, A484. https://doi.org/10.1149/1.1999916
  8. Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439. https://doi.org/10.1149/1.2218308
  9. Jiao, F.; Hill, A. H.; Harrison, A.; Berko, A.; Chadwick, A.; Bruce, P. G. J. Am. Chem. Soc. 2008, 130, 5262. https://doi.org/10.1021/ja710849r
  10. Dominko, R.; Bele, M.; Goupil, J. M.; Gaberscek, M.; Hanzel, D.; Arcon, I.; Jamnik, J. Chem. Mater. 2007, 19, 2960. https://doi.org/10.1021/cm062843g
  11. Yu, D. Y. W.; Donoue, K.; Inoue, T.; Fujimoto, M.; Fujitani, S. J. Electrochem. Soc. 2006, 153, 835. https://doi.org/10.1149/1.2179199
  12. Fongy, C.; Gaillot, A. C.; Jouanneau, S.; Guyomard, D.; Lestriez, B. J. Electrochem. Soc. 2010, 157, 885.
  13. Gaberscek, M. J. Power Sources 2009, 189, 22. https://doi.org/10.1016/j.jpowsour.2008.12.041
  14. Albertus, P.; Couts, J.; Srinivasan, V.; Newman, J. J. Power Sources 2008, 183, 771. https://doi.org/10.1016/j.jpowsour.2008.05.012
  15. Nyman, A.; Zavalis, T. G.; Elger, R.; Behm, M.; Lindbergh, G. J. Electrochem. Soc. 2010, 157, A1236. https://doi.org/10.1149/1.3486161
  16. Chen, Y. H.; Wang, C. W.; Zhang, X.; Sastry, A. M. J. Power Sources 2010, 195, 2851. https://doi.org/10.1016/j.jpowsour.2009.11.044
  17. Safaria, M.; Delacourt, C. J. Electrochem. Soc. 2011, 158, 63.
  18. Doyle, M.; Fuller, T. F.; Newman, J. J. Electrochem. Soc. 1993, 140, 1526. https://doi.org/10.1149/1.2221597
  19. Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994, 141, 1. https://doi.org/10.1149/1.2054684
  20. Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994, 141, 982. https://doi.org/10.1149/1.2054868
  21. Doyle, M.; Newman, J. J. Electrochem. Soc. 1996, 143, 1890. https://doi.org/10.1149/1.1836921
  22. Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, 1517. https://doi.org/10.1149/1.1785012
  23. Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, 1530. https://doi.org/10.1149/1.1785013
  24. Singh, G. K.; Ceder, G.; Bazant, M. Z. Electrochim. Acta 2008, 53, 7599. https://doi.org/10.1016/j.electacta.2008.03.083
  25. Tang, M.; Carter, W. C.; Chiang, Y. M. Annu. Rev. Mater. Res. 2010, 40, 501. https://doi.org/10.1146/annurev-matsci-070909-104435
  26. Tang, M.; Belak, J. F.; Dorr, M. R. J. Phys. Chem. C 2011, 115, 4922.

Cited by

  1. Structures as a High Performance Anode Material for Lithium Ion Batteries vol.11, pp.3, 2014, https://doi.org/10.1002/smll.201303894
  2. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities vol.164, pp.11, 2017, https://doi.org/10.1149/2.0671711jes
  3. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries vol.47, pp.3, 2017, https://doi.org/10.1007/s10800-017-1047-4
  4. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries vol.69, pp.9, 2017, https://doi.org/10.1007/s11837-017-2404-9
  5. for Lithium-Ion Battery Industrial Applications vol.7, pp.12, 2017, https://doi.org/10.1002/aenm.201601625
  6. Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation vol.161, pp.8, 2014, https://doi.org/10.1149/2.018408jes
  7. Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes vol.163, pp.2, 2016, https://doi.org/10.1149/2.0321602jes
  8. Elasticity and Size Effects on the Electrochemical Response of a Graphite, Li-Ion Battery Electrode Particle vol.163, pp.3, 2016, https://doi.org/10.1149/2.0631603jes
  9. An Inverse Method for Estimating the Electrochemical Parameters of Lithium-Ion Batteries vol.164, pp.2, 2017, https://doi.org/10.1149/2.0221702jes
  10. Experimental and Modeling Analysis of Graphite Electrodes with Various Thicknesses and Porosities for High-Energy-Density Li-Ion Batteries vol.165, pp.7, 2018, https://doi.org/10.1149/2.0301807jes
  11. A Numerical Study of the Effects of Cell Formats on the Cycle Life of Lithium Ion Batteries vol.166, pp.10, 2013, https://doi.org/10.1149/2.0261910jes
  12. Role of Stress Concentrations on the Electrochemical Response of a Li-Ion Battery Anode Particle vol.166, pp.12, 2013, https://doi.org/10.1149/2.0881912jes
  13. Effect of Electrode and Electrolyte Thicknesses on All-Solid-State Battery Performance Analyzed With the Sand Equation vol.7, pp.None, 2020, https://doi.org/10.3389/fenrg.2019.00168
  14. Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization vol.29, pp.6, 2013, https://doi.org/10.1088/1674-1056/ab90f8
  15. Design Principles to Govern Electrode Fabrication for the Lithium Trivanadate Cathode vol.167, pp.10, 2013, https://doi.org/10.1149/1945-7111/ab91c8
  16. Myth and Reality of a Universal Lithium‐Ion Battery Electrode Design Optimum: A Perspective and Case Study vol.9, pp.6, 2021, https://doi.org/10.1002/ente.202000989
  17. Simplified Li Ion Cell Model for BMS Coupling an Equivalent Circuit Dynamic Model with a Zero Dimensional Physics Based SEI Model vol.168, pp.11, 2013, https://doi.org/10.1149/1945-7111/ac3597