DOI QR코드

DOI QR Code

Functionalization of Organotrifluoroborates via Cu-Catalyzed C-N Coupling Reaction

  • Lee, Jung-Hyun (Advanced Organic Synthesis Laboratory, Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Kim, Heejin (MarineChemomics Laboratory, Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Kim, Taejung (MarineChemomics Laboratory, Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Song, Jung Ho (MarineChemomics Laboratory, Natural Medicine Center, Korea Institute of Science and Technology) ;
  • Kim, Won-Suk (Advanced Organic Synthesis Laboratory, Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Ham, Jungyeob (MarineChemomics Laboratory, Natural Medicine Center, Korea Institute of Science and Technology)
  • Received : 2012.09.11
  • Accepted : 2012.09.12
  • Published : 2013.01.20

Abstract

Potassium N-heterobiaryltrifluoroborates were successfully prepared via a selective Cu-catalyzed C-N coupling reaction. The $BF_3K$ moiety was well tolerated under the reaction conditions involving CuI and dimethyl-ethylenediamine (DMEDA) in the presence of DMSO. The Pd-catalyzed Suzuki-Miyaura cross couplings of potassium N-heterobiaryltrifluoroborates with bromoarenes were studied to prepare the N-heterotriaryl compounds. Moreover, homocoupling, iodination, and hydroxylation of potassium N-heterobiaryltrifluoroborates provided the corresponding products in high yields.

Keywords

References

  1. Hartwig, J. F. Synlett 2006, 1283.
  2. Surry, D. S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2008, 47, 6338. https://doi.org/10.1002/anie.200800497
  3. Hartwig, J. F. Acc. Chem. Res. 2008, 41, 1534. https://doi.org/10.1021/ar800098p
  4. Ley, S. V.; Thomas, A. W. Angew. Chem. Int. Ed. 2003, 42, 5400. https://doi.org/10.1002/anie.200300594
  5. Corbet, J. P.; Mignani, G. Chem. Rev. 2006, 106, 2651. https://doi.org/10.1021/cr0505268
  6. Elguero, J. Comprehensive Heterocyclic Chemistry, First Edition, Vol. 5; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press: Oxford, 1984; p 291.
  7. Elguero, J. In Comprehensive Heterocyclic Chemistry II, First Edition, Vol. 3; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon, Elsevier Science Ltd.: Oxford, 1996; p 70.
  8. Naito, T.; Yoshikawa, T.; Kitahara, S.; Aoki, N. Chem. Pharm. Bull. 1969, 17, 1467. https://doi.org/10.1248/cpb.17.1467
  9. Kujubu, D. A.; Fletcher, B. S.; Varnum B. C.; Lim, R. W.; Herschman, H. R. J. Biol. Chem. 1991, 266, 12866.
  10. Talley, J. J.; Penning, T. D.; Collins, P. W.; Rogier, D. J.; Malecha, J. W.; Miyashiro, J. M.; Bertenshaw, S. R.; Khanna, I. K.; Graneto, M. J.; Rogers, R. S.; Carter, J. S.; Docter, S. H.; Yu, S. S. patent WO 95/15316, G. D. Searle & Co., 1995.
  11. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter, S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier, D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.; Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.; Isakson, P. C. J. Med. Chem. 1997, 40, 1347. https://doi.org/10.1021/jm960803q
  12. Mutlib, A. E.; Shockcor, J.; Chen, S. Y.; Espina, R.; Lin, J.; Gracianni, N.; Prakash, S.; Gan L. Drug Metab. Dispos. 2001, 29, 1296.
  13. Mutlib, A. E.; Shockcor, J.; Chen, S. Y.; Espina, R.; Pinto, D. J.; Orwatt, M.; Prakash, S.; Gan, L. Chem. Res. Toxicol. 2002, 15, 48. https://doi.org/10.1021/tx0101191
  14. Lewis, G. M.; Cassese, R. G.; Heaslip, R. J.; Bansbach, C. C. Agents Action 1993, 39, C89. https://doi.org/10.1007/BF01972730
  15. Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459. https://doi.org/10.1021/ja981662f
  16. Gujadhur, R. K.; Bates, C. G.; Venkataraman, D. Org. Lett. 2001, 3, 4315. https://doi.org/10.1021/ol0170105
  17. Kwong, F. Y.; Klapars, A.; Buchwald, S. L. Org. Lett. 2002, 4, 581. https://doi.org/10.1021/ol0171867
  18. Antilla, J. C.; Baskin, J. M.; Barder, T. E.; Buchwald, S. L. J. Org. Chem. 2004, 69, 5578. https://doi.org/10.1021/jo049658b
  19. Monnier, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 6954. https://doi.org/10.1002/anie.200804497
  20. Kaddouri, H.; Vicente, V.; Ouali, A.; Ouazzani, F.; Taillefer, M. Angew. Chem. Int. Ed. 2009, 48, 333. https://doi.org/10.1002/anie.200800688
  21. Larsson, P.-F.; Bolm, C.; Norrby, P.-O. Chem. Eur. J. 2010, 16, 13613. https://doi.org/10.1002/chem.201002021
  22. Senra, J. D.; Aguiar douri, H.; Vicente, V.; Ouali, A.; Ouazzani, F.; Taillefer, M., L. C. S.; Simas, A. B. C. Curr. Org. Synth. 2011, 8, 53. https://doi.org/10.2174/157017911794407683
  23. Chan, D. M. T.; Monaki, L. L.; Wang, R. P.; Winters, M. P. Tetrahedron Lett. 1998, 39, 2933. https://doi.org/10.1016/S0040-4039(98)00503-6
  24. Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters, M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941. https://doi.org/10.1016/S0040-4039(98)00504-8
  25. Sreedhar, B.; Venkanna, G. T.; Kumar, K. B. S.; Balasubrahmanyamj, V. Synthesis 2008, 5, 795.
  26. Quach, T. D.; Batey, R. A. Org. Lett. 2003, 5, 1381. https://doi.org/10.1021/ol034454n
  27. Bolshan, Y.; Batey, R. A. Angew. Chem. Int. Ed. 2008, 47, 2109. https://doi.org/10.1002/anie.200704711
  28. Qiao, J. X.; Lam, P. Y. S. Synthesis 2011, 6, 829.
  29. Rao, K. S.; Wu, T.-S. Tetrahedron 2012, 68, 7735. https://doi.org/10.1016/j.tet.2012.06.015
  30. Molander, G. A.; Ribagorda, M. J. Am. Chem. Soc. 2003, 125, 11148. https://doi.org/10.1021/ja0351140
  31. Molander, G. A.; Petrillo, D. E. J. Am. Chem. Soc. 2006, 128, 9634. https://doi.org/10.1021/ja062974i
  32. Molander, G. A.; Ham, J.; Canturk, B. Org. Lett. 2007, 9, 821. https://doi.org/10.1021/ol063043e
  33. Molander, G. A.; Ham, J. Org. Lett. 2006, 8, 2767. https://doi.org/10.1021/ol060826r
  34. Molander, G. A.; Ellis, N. M. J. Org. Chem. 2006, 71, 7491. https://doi.org/10.1021/jo061324u
  35. Molander, G. A.; Cavalcanti, L. N. J. Org. Chem. 2011, 76, 623. https://doi.org/10.1021/jo102208d
  36. 11. Kabalka, G. W.; Mereddy, A. R. Tetrahedron Lett. 2004, 45, 343. https://doi.org/10.1016/j.tetlet.2003.10.149
  37. Cho, Y. A.; Kim, D.-S.; Ahn, H. R.; Canturk, B.; Molander, G. A.; Ham, J. Org. Lett. 2009, 11, 4330. https://doi.org/10.1021/ol901669k
  38. Cristau, H.-J.; Cellier, P. P.; Spindler, J.-F.; Taillefer, M. Eur. J. Org. Chem. 2004, 695.
  39. Henness, S.; Robinson, D. M.; Lyseng-Williamson, K. A. Drugs 2006, 66, 2109. https://doi.org/10.2165/00003495-200666160-00006
  40. McCormack, P. L. Drugs 2011, 71, 2457. https://doi.org/10.2165/11208240-000000000-00000
  41. Kim, D.-S.; Bolla, K.; Lee, S.; Ham, J. Tetrahedron 2011, 67, 1062. https://doi.org/10.1016/j.tet.2010.12.049

Cited by

  1. Substitution of fluorine in M[C 6 F 5 BF 3 ] with organolithium compounds: distinctions between O- and N-nucleophiles vol.13, pp.None, 2013, https://doi.org/10.3762/bjoc.13.69
  2. Recent Progress Concerning the N-Arylation of Indoles vol.26, pp.16, 2013, https://doi.org/10.3390/molecules26165079